That comment about non-caching doesn't mean what you think it means, and where it is used, it isn't usually a user-accessible feature. That is, CPU cache control is typically a privileged operation.
That said...
-- A normal user program can be build with functions who's attributes are "hot" or "cold" to let the compiler tell the loader to group the functions in ways that will utilize the cache most usefully.
-- A normal program can use the madvise() function in linux to tell the paging function various things, including the fact that the memory just used is or is not likely to be used again soon.
-- The kernel itself uses the Memory Type Range Regesters (mtrr) and Page Attribute Table (pat) flags in later kernels, to tell the hardware that particular ranges of memory (such as the memory mapped display buffer, and the various parts of the PCI bus) are not to be cached.
"Normal Data™" such as you are likely to use in any C program will essentially never benefit from marking any of its data not cache-worthy. The performance improvement that not-cached data enjoys is the subsequent absence of the various cache-flush and memory barrier operations that memory mapped devices and display buffers would need almost constantly. Laying a cache over a memory mapped device, for example, would require a cache invalidate command before every read and a cache forced write command after every single write to make sure that the reads and writes happen at the exact moment needed. This would "poison" the cache usage, using up and instantly discarding cache lines (a physically limited resource) in a most unfriendly and unhelpful way.
In the rare case that you write a program that gains access to one of these cache harmful regions -- such as if you wrote part of the X display server on a linux system -- the kernel would have already set the registers for the device and the non-cache behavior would be transparent to you.
There is effectively no time where your normal application grade program is going to benefit from any ability to mark a variable as harmful to cache beyond the various madvise() type of usage.
Even then, the cases were you could gain any benefit are so rare that if you'd ever acutally run into one, the problem set would have included the need and methodology as part of your research and you'd have been told how and why so explicitly you'd never have needed to ask this question.
To go back to the same example again, if you'd been writing the necessary driver, when you'd been reading up on the display adapter hardware or the PCI bus the various flags and techniques would have been documented and discussed in the hardware guide.
There are ways to pull off cache ejection and such from user space with things like the CLCLEAR instruction on an intel platform. These techniques will not improve general performance.
Since it's a privileged operation on a Linux system, you could write a kernel driver that acquired and marked a region of memory as uncacheable and then let you map it into your application. But the need for such a region is so rare, and so likely to be misused, that there isn't a normal methodology for doing it in place.
So how do you do it? You don't, at least not the you that you are today. When you become a kernel driver writer with an intimate specialty knowledge of multi-threaded code and data synchronization issues, you'll know how you could do it, and at that point you'll know why you don't want to except as a last resort.
TL;DR :: because of the way linux uses and manages data and code, there is never a benefit for marking any part of a normal application as uncacheable that doesn't cause more heartbreak than it saves. As such, there is no unprivileged API for doing this.
P.S. Also, that said, someone already pointed to things that lead to this article http://lwn.net/Articles/255364/ which covers ways to make your program very cache friendly and some of the ways that you can do some cache bypass operations very cheaply. For instance use of memset() tends to go around the cache while setting memory, and some operations can "stream past" the cache. This isn't the same thing as what you ask, but once you understand all of that article you'll have a much better understanding of why marking a region of memory as uncachable is usually, as the Jedi say, not the solution you are looking for.