So I recently saw this puzzle posted by the British GCHQ:
It involves solving a 25x25 nonogram:
A nonogram is picture logic puzzles in which cells in a grid must be colored or left blank according to numbers at the side of the grid to reveal a hidden picture. In this puzzle type, the numbers are a form of discrete tomography that measures how many unbroken lines of filled-in squares there are in any given row or column. For example, a clue of "4 8 3" would mean there are sets of four, eight, and three filled squares, in that order, with at least one blank square between successive groups."
Naturally I had the inclination to try and write a program that would solve it for me. I was thinking of a recursive backtracking algorithm that starts at row 0, and for each possible arrangement of that row given the information from the row clue, it places a possible combination of the next row and verifies whether it is a valid placement given the column clues. If it is, it continues, if not it backtracks, until all the rows are placed in a valid configuration, or all possible row combinations have been exhausted.
I tested it on a few 5x5 puzzles and it works perfectly. The issue is that it takes too long to compute the 25x25 GCHQ puzzle. I need ways to make this algorithm more efficient - enough so that it can solve the puzzle linked above. Any ideas?
Here is my code for generating a set of the row possibilities for each row as well as the code for the solver (Note* it uses some non standard libraries but this shouldn't detract from the point):
// The Vector<int> input is a list of the row clues eg. for row 1, input = {7,3,1,1,7}. The
// int currentElemIndex keeps track of what block of the input clue we are dealing with i.e
// it starts at input[0] which is the 7 sized block and for all possible places it can be
// placed, places the next block from the clue recursively.
// The Vector<bool> rowState is the state of the row at the current time. True indicates a
// colored in square, false indicates empty.
// The Set< Vector<bool> >& result is just the set that stores all the possible valid row
// configurations.
// The int startIndex and endIndex are the bounds on the start point and end point between
// which the function will try to place the current block. The endIndex is calculated by
// subtracting the width of the board from the sum of the remaining block sizes + number
// of blocks remaining. Ie. if for row 1 with the input {7,3,1,1,7} we were placing the
// first block, the endIndex would be (3+1+1+7)+4=16 because if the first block was placed
// further than this, it would be impossible for the other blocks to fit.
// BOARD_WIDTH = 25;
// The containsPresets funtion makes sure that the row configuration is only added to the
// result set if it contains the preset values of the puzzle (the given squares
// at the start of the puzzle).
void Nonogram::rowPossibilitiesHelper(int currentElemIndex, Vector<bool>& rowState,
Vector<int>& input, Set< Vector<bool> >& result,
int startIndex, int rowIndex) {
if(currentElemIndex == input.size()) {
if(containsPresets(rowState, rowIndex)) {
result += rowState;
}
} else {
int endIndex = BOARD_WIDTH - rowSum(currentElemIndex+1, input);
int blockSize = input[currentElemIndex];
for(int i=startIndex; i<=endIndex-blockSize; i++) {
for(int j=0; j<blockSize; j++) {
rowState[i+j] = true; // set block
}
rowPossibilitiesHelper(currentElemIndex+1, rowState, input, result, i+blockSize+1, rowIndex); // explore
for(int j=0; j<blockSize; j++) {
rowState[i+j] = false; // unchoose
}
}
}
}
// The function is initally passed in 0 for the rowIndex. It gets a set of all possible
// valid arrangements of the board and for each one of them, sets the board row at rowIndex
// to the current rowConfig. Is then checks if the current configuration so far is valid in
// regards to the column clues. If it is, it solves the next row, if not, it unmarks the
// current configuration from the board row at rowIndex.
void Nonogram::solveHelper(int rowIndex) {
if(rowIndex == BOARD_HEIGHT) {
printBoard();
} else {
for(Vector<bool> rowConfig : rowPossisbilities(rowIndex)) {
setBoardRow(rowConfig, rowIndex);
if(isValidConfig(rowIndex)) { // set row
solveHelper(rowIndex+1); // explore
}
unsetBoardRow(rowIndex); // unset row
}
}
}