I'm trying to do multilabel classification with SVM.
I have nearly 8k features and also have y vector of length with nearly 400. I already have binarized Y vectors, so I didn't use MultiLabelBinarizer()
but when I use it with my Y data's raw form, it still gives same thing.
I'm running this code:
X = np.genfromtxt('data_X', delimiter=";")
Y = np.genfromtxt('data_y', delimiter=";")
training_X = X[:2600,:]
training_y = Y[:2600,:]
test_sample = X[2600:2601,:]
test_result = Y[2600:2601,:]
classif = OneVsRestClassifier(SVC(kernel='rbf'))
classif.fit(training_X, training_y)
print(classif.predict(test_sample))
print(test_result)
After all fitting process when it comes to prediction part, it says Label not x is present in all training examples
(x is a few different numbers in range of my y vector length which is 400). After that it gives predicted y vector which is always zero vector with length of 400(y vector length).
I'm new at scikit-learn and also in machine learning. I couldn't figure out the problem here. What's the problem and what should I do to fix it?
Thanks.