With the release of pandas 0.24.0, there is now an official way to achieve this by passing a custom insert method to the to_sql
function.
I was able to achieve the behavior of REPLACE INTO
by passing this callable to to_sql
:
def mysql_replace_into(table, conn, keys, data_iter):
from sqlalchemy.dialects.mysql import insert
from sqlalchemy.ext.compiler import compiles
from sqlalchemy.sql.expression import Insert
@compiles(Insert)
def replace_string(insert, compiler, **kw):
s = compiler.visit_insert(insert, **kw)
s = s.replace("INSERT INTO", "REPLACE INTO")
return s
data = [dict(zip(keys, row)) for row in data_iter]
conn.execute(table.table.insert(replace_string=""), data)
You would pass it like so:
df.to_sql(db, if_exists='append', method=mysql_replace_into)
Alternatively, if you want the behavior of INSERT ... ON DUPLICATE KEY UPDATE ...
instead, you can use this:
def mysql_replace_into(table, conn, keys, data_iter):
from sqlalchemy.dialects.mysql import insert
data = [dict(zip(keys, row)) for row in data_iter]
stmt = insert(table.table).values(data)
update_stmt = stmt.on_duplicate_key_update(**dict(zip(stmt.inserted.keys(),
stmt.inserted.values())))
conn.execute(update_stmt)
Credits to https://stackoverflow.com/a/11762400/1919794 for the compile method.