Well, the naive approach of just using Prim or Kruskal to find the min cost spanning tree of the new graph and then see which one has a lower total cost isn't too bad at O(|E|log|E|).
But we don't need to look at the whole graph.
Suppose your new edge connects vertices A and B. Let C be the parent of A. If B is not a descendent of A, then if A-B is lower cost than A-C, then T is no longer the MST and B should be the new parent of the subtree rooted at A.
If B is a descendant of A, then if A-B is shorter than any of the branches in T along the path from A to B, then T is no longer the MST, and the highest cost edge along that path should be removed, B is the root of the newly disconnected component, and should be added as a child of A.
I believe you may need to check these things a second time, reversing which vertices are A and B. The complexity of this is log|V| where the base of the log is the average number of children per node of T. In the case of T being a straight line, it's O(|V|), but otherwise, I think you could say it is O(log|V|).