You can think of scanf as extracting words separated by whitespace from a stream of characters. Imagine reading a file which contains a table of numbers, for example, without worrying about the exact number count per line or the exact space count and nature between numbers.
Whitespace, for the record, is horizontal and vertical (these exist) tabs, carriage returns, newlines, form feeds and last not least, actual spaces.
In order to free the user from details, scanf treats all whitespace the same: It normally skips it until it hits a non-whitespace and then tries to convert the character sequence starting there according to the specified input conversion. E.g. with "%d" it expects a sequence of digits, perhaps preceded by a minus sign.
The input conversion "%s" also starts with skipping whitespace (and that's clearer documented in the opengroup's man page than in the Linux one).
After skipping leading whitespace, "%s" accepts everything until another whitespace is read (and put back in the input, because it isn't made part of the "word" being read). That sequence of non-whitespace chars -- basically a "word" -- is stored in the buffer provided. For example, scanning a string from " a bc "
results in skipping 3 spaces and storing "a" in the buffer. (The next scanf would skip the intervening space and put "bc" in the buffer. The next scanf after that would skip the remaining whitespace, encounter the end of file and return EOF.) So if a user is asked to enter three words they could give three words on one line or on three lines or on any number of lines preceded or separated by any number of empty lines, i.e. any number of subsequent newlines. Scanf couldn't care less.
There are a few exceptions to the "skip leading whitespace" strategy. Both concern conversions which usually indicate that the user wants to have more control about the input conversion. One of them is "%c" which just reads the next character. The other one is the "%[" spec which details exactly which characters are considered part of the next "word" to read. The conversion specification you use, "%[^\n]", reads everything except newline. Input from the keyboard is normally passed to a program line by line, and each line is by definition terminated by a newline. The newline of the first line passed to your program will be the first character from the input stream which does not match the conversion specification. Scanf will read it, inspect it and then put it back in the input stream (with ungetc()
) for somebody else to consume. Unfortunately, it will itself be the next consumer, in another loop iteration (as I assume). Now the very first character it encounters (the newline) does not match the input conversion (which demands anything but the newline). Scanf therefore gives up immediately, puts the offending character dutifully back in the input for somebody else to consume and returns 0 indicating the failure to even perfom the very first conversion in the format string. But alas, it itself will be the next consumer. Yes, machines are stupid.