The answer seems to be "it's sort of possible".
sample corresponds to valueB, but there is no direct equivalent to sync.
However, it can be re-implemented with the help of execute:
module Sync where
import Control.Monad.Trans
import Data.IORef
import Reactive.Banana
import Reactive.Banana.Frameworks
data Network = Network { eventNetwork :: EventNetwork
, run :: MomentIO () -> IO ()
}
newNet :: IO Network
newNet = do
-- Create a new Event to handle MomentIO actions to be executed
(ah, call) <- newAddHandler
network <- compile $ do
globalExecuteEV <- fromAddHandler ah
-- Set it up so it executes MomentIO actions passed to it
_ <- execute globalExecuteEV
return ()
actuate network
return $ Network { eventNetwork = network
, run = call -- IO Action to fire the event
}
-- To run a MomentIO action within the context of the network, pass it to the
-- event.
sync :: Network -> MomentIO a -> IO a
sync Network{run = call} f = do
-- To retrieve the result of the action we set up an IORef
ref <- newIORef (error "Network hasn't written result to ref")
-- (`call' passes the do-block to the event)
call $ do
res <- f
-- Put the result into the IORef
liftIO $ writeIORef ref res
-- and read it back once the event has finished firing
readIORef ref
-- Example
main :: IO ()
main = do
net <- newNet -- Create an empty network
(bhv1, set1) <- sync net $ newBehavior (0 :: Integer)
(bhv2, set2) <- sync net $ newBehavior (0 :: Integer)
set1 3
set2 7
let sumB = (liftA2 (+) bhv1 bhv2)
print =<< sync net (valueB sumB)
set1 5
print =<< sync net (valueB sumB)
return ()