I currently have data with the following structure:
<table class="tableizer-table">
<tr class="tableizer-firstrow">
<th>Date</th>
<th>First Term - 2014</th>
<th>NA</th>
</tr>
<tr>
<td>Classroom</td>
<td>2-A</td>
<td>NA</td>
</tr>
<tr>
<td>Tutor</td>
<td>Julian Anderson</td>
<td>NA</td>
</tr>
<tr>
<td>First Name</td>
<td>Last Name</td>
<td>Grade</td>
</tr>
<tr>
<td>Alan</td>
<td>Blacksmith</td>
<td>54</td>
</tr>
<tr>
<td>Andrew</td>
<td>Cotton</td>
<td>78</td>
</tr>
<tr>
<td>Anne</td>
<td>King</td>
<td>85</td>
</tr>
<tr>
<td>Helga</td>
<td>Blackwood</td>
<td>89</td>
</tr>
<tr>
<td>Joshua</td>
<td>Hagan</td>
<td>53</td>
</tr>
<tr>
<td>Location</td>
<td>First Floor</td>
<td>NA</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Classroom</td>
<td>6-B</td>
<td>NA</td>
</tr>
<tr>
<td>Tutor</td>
<td>Thomas Rodriguez</td>
<td>NA</td>
</tr>
<tr>
<td>First Name</td>
<td>Last Name</td>
<td>Grade</td>
</tr>
<tr>
<td>Andrew</td>
<td>Herrera</td>
<td>77</td>
</tr>
<tr>
<td>Brian</td>
<td>Paredes</td>
<td>72</td>
</tr>
<tr>
<td>Mathew</td>
<td>Hill</td>
<td>82</td>
</tr>
<tr>
<td>Melanie</td>
<td>Streme</td>
<td>87</td>
</tr>
<tr>
<td>Michael</td>
<td>Blacksmith</td>
<td>91</td>
</tr>
<tr>
<td>Steven</td>
<td>Ji</td>
<td>57</td>
</tr>
<tr>
<td>Thomas</td>
<td>Doberti</td>
<td>96</td>
</tr>
<tr>
<td>Location</td>
<td>Second Floor</td>
<td>NA</td>
</tr>
</table>
The objective is to make the data look like this:
<table class="tableizer-table">
<tr class="tableizer-firstrow">
<th>First Name</th>
<th>Last Name</th>
<th>Grade</th>
<th>Tutor</th>
<th>Classroom</th>
<th>Date</th>
<th>Location</th>
</tr>
<tr>
<td>Alan</td>
<td>Blacksmith</td>
<td>54</td>
<td>Julian Anderson</td>
<td>2-A</td>
<td>First Term - 2014</td>
<td>First Floor</td>
</tr>
<tr>
<td>Andrew</td>
<td>Cotton</td>
<td>78</td>
<td>Julian Anderson</td>
<td>2-A</td>
<td>First Term - 2014</td>
<td>First Floor</td>
</tr>
<tr>
<td>Anne</td>
<td>King</td>
<td>85</td>
<td>Julian Anderson</td>
<td>2-A</td>
<td>First Term - 2014</td>
<td>First Floor</td>
</tr>
<tr>
<td>Helga</td>
<td>Blackwood</td>
<td>89</td>
<td>Julian Anderson</td>
<td>2-A</td>
<td>First Term - 2014</td>
<td>First Floor</td>
</tr>
<tr>
<td>Joshua</td>
<td>Hagan</td>
<td>53</td>
<td>Julian Anderson</td>
<td>2-A</td>
<td>First Term - 2014</td>
<td>First Floor</td>
</tr>
<tr>
<td>Andrew</td>
<td>Herrera</td>
<td>77</td>
<td>Thomas Rodriguez</td>
<td>6-B</td>
<td>First Term - 2014</td>
<td>Second Floor</td>
</tr>
<tr>
<td>Brian</td>
<td>Paredes</td>
<td>72</td>
<td>Thomas Rodriguez</td>
<td>6-B</td>
<td>First Term - 2014</td>
<td>Second Floor</td>
</tr>
<tr>
<td>Mathew</td>
<td>Hill</td>
<td>82</td>
<td>Thomas Rodriguez</td>
<td>6-B</td>
<td>First Term - 2014</td>
<td>Second Floor</td>
</tr>
<tr>
<td>Melanie</td>
<td>Streme</td>
<td>87</td>
<td>Thomas Rodriguez</td>
<td>6-B</td>
<td>First Term - 2014</td>
<td>Second Floor</td>
</tr>
<tr>
<td>Michael</td>
<td>Blacksmith</td>
<td>91</td>
<td>Thomas Rodriguez</td>
<td>6-B</td>
<td>First Term - 2014</td>
<td>Second Floor</td>
</tr>
<tr>
<td>Steven</td>
<td>Ji</td>
<td>57</td>
<td>Thomas Rodriguez</td>
<td>6-B</td>
<td>First Term - 2014</td>
<td>Second Floor</td>
</tr>
<tr>
<td>Thomas</td>
<td>Doberti</td>
<td>96</td>
<td>Thomas Rodriguez</td>
<td>6-B</td>
<td>First Term - 2014</td>
<td>Second Floor</td>
</tr>
</table>
As you can see, the objective is to transfer the information located above and below the data of the students as new columns. I am confident that I can achieve this in Excel via the if formula; but I was wondering if the same could be achieved in R; I would be grateful for your help on the coding that I would need for this procedure.
I am confident that the procedure would require me to detect certain strings and extract the data located a certain number of cells from this location and paste them as a new column. Finally deleting the rows that have an NA
in the third column.