I have a pandas df that represents the open days of a shop looking like:
Dates Open
0 2016-01-01 0
1 2016-01-02 0
2 2016-01-03 0
3 2016-01-04 1
4 2016-01-05 1
5 2016-01-06 1
6 2016-01-07 1
7 2016-01-08 1
8 2016-01-09 0
9 2016-01-10 0
10 2016-01-11 1
11 2016-01-12 1
12 2016-01-13 1
13 2016-01-14 1
14 2016-01-15 1
15 2016-01-16 0
16 2016-01-17 0
17 2016-01-18 1
18 2016-01-19 1
19 2016-01-20 1
20 2016-01-21 1
21 2016-01-22 1
22 2016-01-23 0
23 2016-01-24 0
24 2016-01-25 1
25 2016-01-26 1
26 2016-01-27 1
27 2016-01-28 1
28 2016-01-29 1
this can be recreated by:
Dates =['2016-01-01',
'2016-01-02',
'2016-01-03',
'2016-01-04',
'2016-01-05',
'2016-01-06',
'2016-01-07',
'2016-01-08',
'2016-01-09',
'2016-01-10',
'2016-01-11',
'2016-01-12',
'2016-01-13',
'2016-01-14',
'2016-01-15',
'2016-01-16',
'2016-01-17',
'2016-01-18',
'2016-01-19',
'2016-01-20',
'2016-01-21',
'2016-01-22',
'2016-01-23',
'2016-01-24',
'2016-01-25',
'2016-01-26',
'2016-01-27',
'2016-01-28',
'2016-01-29']
Open = [0,0,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,1,1]
df = DataFrame({'Dates':Dates, 'Open':Open})
the column open represents the days in which the shop is open for deliveries. I want to create a new column with the next open day for each date in the leftmost column. I cannot use predefined workingdays functions but I have to use the Open column to determine whether or not the shop is open. The desired outcome would be:
Dates Open Desired
0 2016-01-01 0 2016-01-04
1 2016-01-02 0 2016-01-04
2 2016-01-03 0 2016-01-04
3 2016-01-04 1 2016-01-05
4 2016-01-05 1 2016-01-06
5 2016-01-06 1 2016-01-07
6 2016-01-07 1 2016-01-08
7 2016-01-08 1 2016-01-11
8 2016-01-09 0 2016-01-11
9 2016-01-10 0 2016-01-11
10 2016-01-11 1 2016-01-12
11 2016-01-12 1 2016-01-13
12 2016-01-13 1 2016-01-14
13 2016-01-14 1 2016-01-15
14 2016-01-15 1 2016-01-18
15 2016-01-16 0 2016-01-18
16 2016-01-17 0 2016-01-18
17 2016-01-18 1 2016-01-19
18 2016-01-19 1 2016-01-20
19 2016-01-20 1 2016-01-21
20 2016-01-21 1 2016-01-22
21 2016-01-22 1 2016-01-25
22 2016-01-23 0 2016-01-25
23 2016-01-24 0 2016-01-25
24 2016-01-25 1 2016-01-26
25 2016-01-26 1 2016-01-27
26 2016-01-27 1 2016-01-28
27 2016-01-28 1 2016-01-29
28 2016-01-29 1