The behavior of changes made in one thread when viewed from another is governed by the Java Memory Model. In particular, these rules are extremely weak when it comes to something like building a collection and then passing the built-and-now-immutable collection to another thread. The JMM does not guarantee that the other thread won't see an earlier view where the collection was not fully built!
Since synchronized
blocks enforce an ordering, they can be used to get a consistent view if they're used on every single operation.
In practice, though, this is rarely actually necessary. On the CPU side, there is typically a memory barrier operation that can be used to enforce memory consistency (i.e. if you write the tail of your list and then pass a memory barrier, no other thread can see the tail un-set). And in practice, JVMs usually have to implement synchronized by using memory barriers. So one could hope that you could just pass the created list within a synchronzied
block, trusting that a memory barrier would be issued, and everything thereafter would be fine.
Unfortunately, the JMM doesn't require that it be implemented in this way (and you can't assume that the memory-barrier-like behavior of object creation will actually be a full memory barrier that applies to everything in that thread as opposed to simply the final fields of that object), which is both why the recommendation is what it is, and why it's not fixed (yet, anyway) in the library.
For what it's worth, on x86 architectures, I've never observed a problem if you hand off the immutable object within a synchronized
block. I have observed problems if you try to do it with CAS (e.g. by using the java.util.concurrent.atomic
classes).