Another usecase for setdefault
in CPython is that it is atomic in all cases, whereas defaultdict
will not be atomic if you use a default value created from a lambda.
cache = {}
def get_user_roles(user_id):
if user_id in cache:
return cache[user_id]['roles']
cache.setdefault(user_id, {'lock': threading.Lock()})
with cache[user_id]['lock']:
roles = query_roles_from_database(user_id)
cache[user_id]['roles'] = roles
If two threads execute cache.setdefault
at the same time, only one of them will be able to create the default value.
If instead you used a defaultdict:
cache = defaultdict(lambda: {'lock': threading.Lock()}
This would result in a race condition. In my example above, the first thread could create a default lock, and the second thread could create another default lock, and then each thread could lock its own default lock, instead of the desired outcome of each thread attempting to lock a single lock.
Conceptually, setdefault
basically behaves like this (defaultdict also behaves like this if you use an empty list, empty dict, int, or other default value that is not user python code like a lambda):
gil = threading.Lock()
def setdefault(dict, key, value_func):
with gil:
if key not in dict:
return
value = value_func()
dict[key] = value
Conceptually, defaultdict
basically behaves like this (only when using python code like a lambda - this is not true if you use an empty list):
gil = threading.Lock()
def __setitem__(dict, key, value_func):
with gil:
if key not in dict:
return
value = value_func()
with gil:
dict[key] = value