I am new to Spark (using 1.1 version) and Scala .. I am converting my existing Hadoop MapReduce code to spark MR using Scala and bit lost.
I want my mapped RDD to be grouped by Key .. When i read online it's suggested that we should avoid groupByKey and use reducedByKey instead.. but when I apply reduceBykey I am not getting list of values for given key as expected by my code =>Ex.
val rdd = sc.parallelize(List(("k1", "v11"), ("k1", "v21"), ("k2", "v21"), ("k2", "v22"), ("k3", "v31") ))
My "values" for actual task are huge, having 300 plus columns in key-values pair And when I will do group by on common key it will result in shuffle which i want to avoid.
I want something like this as o/p (key, List OR Array of values) from my mapped RDD =>
rdd.groupByKey()
which gives me following Output
(k3,ArrayBuffer(v31))
(k2,ArrayBuffer(v21, v22))
(k1,ArrayBuffer(v11, v21))
But when I use
rdd.reduceByKey((x,y) => x+y)
I get values connected together like following- If pipe('|') or some other breakable character( (k2,v21|v22) ) would have been there my problem would have been little bit solved but still having list would be great for good coding practice
(k3,v31)
(k2,v21v22)
(k1,v11v21)
Please help