This is a formula to approximate arcsine(x) using Taylor series from this blog
This is my implementation in C#, I don't know where is the wrong place, the code give wrong result when running: When i = 0, the division will be 1/x. So I assign temp = 1/x at startup. For each iteration, I change "temp" after "i". I use a continual loop until the two next value is very "near" together. When the delta of two next number is very small, I will return the value.
My test case: Input is x =1, so excected arcsin(X) will be arcsin (1) = PI/2 = 1.57079633 rad.
class Arc{
static double abs(double x)
{
return x >= 0 ? x : -x;
}
static double pow(double mu, long n)
{
double kq = mu;
for(long i = 2; i<= n; i++)
{
kq *= mu;
}
return kq;
}
static long fact(long n)
{
long gt = 1;
for (long i = 2; i <= n; i++) {
gt *= i;
}
return gt;
}
#region arcsin
static double arcsinX(double x) {
int i = 0;
double temp = 0;
while (true)
{
//i++;
var iFactSquare = fact(i) * fact(i);
var tempNew = (double)fact(2 * i) / (pow(4, i) * iFactSquare * (2*i+1)) * pow(x, 2 * i + 1) ;
if (abs(tempNew - temp) < 0.00000001)
{
return tempNew;
}
temp = tempNew;
i++;
}
}
public static void Main(){
Console.WriteLine(arcsin());
Console.ReadLine();
}
}