So basically I want to implement this Finding all cycles in undirected graphs in C++ (the only difference is that the graph is weighted), but that's not really my problem right now as I can probably deal with it later.
I tried to rewrite the C# code to C++, but I'm still not confident with my OOP in C++ and I don't quite understand what I did wrong. I used debugger and my program doesn't even enter the findNewCycles function and I'm also pretty sure that there are more problems, but currently I want to find out how to even start. There's something wrong with constructor of my Path class (at least debugger suggests me this), but I don't understand why. Can you please help me? Here's my code:
#include <iostream>
#include <utility>
#include <vector>
#include <algorithm>
using namespace std;
class Graph {
struct Edge {
int vert[2];
double value;
public:
Edge(int vec1, int vec2, double w) {
vert[0] = vec1;
vert[1] = vec2;
value = w;
};
};
struct Path {
vector<int> vertices;
double totalValue;
public:
Path() : totalValue(0) {};
Path(vector<int> v, double tv) : vertices(v), totalValue(tv) {};
Path(const Path &a) {
totalValue = a.totalValue;
vertices = a.vertices;
}
};
int vortexCount, edgeCount, cycleCount;
vector<Path> cycles;
vector<Edge> edges;
void findNewCycles(Path a) {
int n = a.vertices[0];
int x;
Path sub(a);
for(int i = 0; i < edgeCount; i++) {
for(int j = 0; j <=1; j++) {
if (edges[i].vert[j] == n) {
x = edges[i].vert[(j+1)%2];
if (!visited(x, a)) {
sub.totalValue += edges[i].value;
sub.vertices.insert(sub.vertices.begin(), x);
findNewCycles(sub);
}
else if ((a.vertices.size() > 2) && (x == a.vertices[a.vertices.size() - 1])) {
Path normal = normalize(a);
Path inv = invert(normal);
if(isNew(normal) && isNew(inv)) cycles.push_back(normal);
}
}
}
}
}
bool equals(Path a, Path b) {
if((a.vertices.size() == b.vertices.size()) && (a.totalValue == b.totalValue)) {
for (unsigned i=0; i < a.vertices.size(); i++) {
if(a.vertices[i] != b.vertices[i]) return false;
}
return true;
}
else return false;
}
Path invert(Path a) {
Path inverted(a);
reverse(inverted.vertices.begin(), inverted.vertices.end());
return normalize(inverted);
}
Path normalize(Path a) {
Path normalized(a);
vector<int>::iterator smallest = min_element(normalized.vertices.begin(), normalized.vertices.end());
std::rotate(normalized.vertices.begin(), smallest, normalized.vertices.end());
return normalized;
}
bool isNew(Path a) {
for(int i=0; i<cycleCount; i++) {
if(equals(cycles[i], a)) {
return false;
}
}
return true;
}
bool visited(int n, Path a) {
for (unsigned i=0; i < a.vertices.size(); i++) {
if(a.vertices[i] == n) return true;
}
return false;
}
public:
Graph(int size) : vortexCount(size), edgeCount(0), cycleCount(0) {};
~Graph() {};
vector<Edge>::iterator findEdge(int v1, int v2) {
if(v1 == v2 || v1 > vortexCount || v2 > vortexCount) return edges.end();
vector<Edge>::iterator iter;
for(iter = edges.begin(); iter != edges.end(); ++iter) {
if(iter->vert[0] == v1 && iter->vert[1] == v2) return iter;
if(iter->vert[1] == v1 && iter->vert[0] == v2) return iter;
}
return edges.end();
}
bool addEdge(int v1, int v2, double value) {
if(v1 == v2 || v1 > vortexCount || v2 > vortexCount) return false;
vector<Edge>::iterator p = findEdge(v1, v2);
if(p != edges.end()) {
p->value = value;
}
else {
Edge edge(v1, v2, value);
edges.push_back(edge);
edgeCount++;
}
return true;
}
void runCycleSearch() {
for (int i = 0; i < edgeCount; i++) {
for (int j = 0; j < 2; j++) {
cout << i << " " << j;
Path searchPath;
searchPath.vertices.push_back(edges[i].vert[j]);
findNewCycles(searchPath);
}
}
for(int i=0; i<cycleCount; i++) {
for(unsigned j=0; j<cycles[i].vertices.size(); j++) {
cout << cycles[i].vertices[j] << " ";
}
cout << cycles[i].totalValue;
}
}
};
int main() {
int n, v1, v2;
double val;
bool control = true;
cin >> n;
Graph graph(n);
while(control) {
cin >> v1;
if(v1 == -1) break;
cin >> v2 >> val;
control = graph.addEdge(v1, v2, val);
}
graph.runCycleSearch();
}