I have been given the problem:
f(n) are asymptotically positive functions. Prove f(n) = Θ(g(n)) iff g(n) = Θ(f(n)).
Everything I have found points to this statement being invalid. For example an answer I've come across states:
f(n) = O(g(n)) implies g(n) = O(f(n))
f(n) = O(g(n)) means g(n) grows faster than f(n). It cannot imply that f(n) grows
faster than g(n). Hence not true.
Another states:
If f(n) = O(g(n)) then O(f(n)). This is false. If f(n) = 1 and g(n) = n
for all natural numbers n, then f(n) <= g(n) for all natural numbers n, so
f(n) = O(g(n)). However, suppose g(n) = O(f(n)). Then there are natural
numbers n0 and a constant c > 0 such that n=g(n) <= cf(n) = c for all n >=
n0 which is impossible.
I understand that there are slight differences between my exact question and the examples I have found, but I've only been able to come up with solutions that do not prove it. I am correct in thinking that it is not able to be proved or am I looking over some detail?