Currently i am working on checking duplicate images , so i am using ORB for that, the first part is almost complete, i have the descriptor vector of both the images, now as the second part i want to know how we calculate the scores using hamming distance, and what should be the threshold of saying that these are duplicates
img1 = gray_image15
img2 = gray_image25
# Initiate STAR detector
orb = cv2.ORB_create()
# find the keypoints with ORB
kp1 = orb.detect(img1,None)
kp2 = orb.detect(img2,None)
# compute the descriptors with ORB
kp1, des1 = orb.compute(img1, kp1)
kp2, des2 = orb.compute(img2, kp2)
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = matcher.match(des1, des2)
# Sort them in the order of their distance.
matches = sorted(matches, key = lambda x:x.distance)
i just want to know the next step in this process so that ultimately i can print yes or no for duplicates. i am using opencv3.0.0 with python 2.7