There are a number of problems in the code as posted, however, the gist seems to be something that you'd want to do with numpy arrays instead of iterating over lists.
For example, the set of if/else cases that check if pn[i] >= some_value
and then sets a corresponding entry into another list with the result (true/false) could be done as a one-liner with an array operation much faster than iterating over lists.
import numpy as np
# for example, assuming you have 9 numbers in your list
# and you want them divided into 3 sublists of 3 values each
# in0 is your original list, which for example might be:
in0 = [1.05, -0.45, -0.63, 0.07, -0.71, 0.72, -0.12, -1.56, -1.92]
# convert into array
in2 = np.array(in0)
# reshape to 3 rows, the -1 means that numpy will figure out
# what the second dimension must be.
in2 = in2.reshape((3,-1))
print(in2)
output:
[[ 1.05 -0.45 -0.63]
[ 0.07 -0.71 0.72]
[-0.12 -1.56 -1.92]]
With this 2-d array structure, element-wise summing is super easy. So is element-wise threshold checking. Plus 'vectorizing' these operations has big speed advantages if you are working with large data.
# add corresponding entries, we want to add the columns together,
# as each row should correspond to your sub-lists.
pn = in2.sum(axis=0) # you can sum row-wise or column-wise, or all elements
print(pn)
output: [ 1. -2.72 -1.83]
# it is also trivial to check the threshold conditions
# here I check each entry in pn against a scalar
alpha = 0.0
out1 = ( pn >= alpha )
print(out1)
output: [ True False False]
# you can easily convert booleans to 1/0
x = out1.astype('int') # or simply out1 * 1
print(x)
output: [1 0 0]
# if you have a list of element-wise thresholds
beta = np.array([0.0, 0.5, -2.0])
out2 = (pn >= beta)
print(out2)
output: [True False True]
I hope this helps. Using the correct data structures for your task can make the analysis much easier and faster. There is a wealth of documentation on numpy, which is the standard numeric library for python.