I want to implement the MLP model taught in https://www.coursera.org/learn/machine-learning, using tensorflow. Here's implementation.
# one hidden layer MLP
x = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(tf.float32, shape=[None, 10])
W_h1 = tf.Variable(tf.random_normal([784, 512]))
h1 = tf.nn.sigmoid(tf.matmul(x, W_h1))
W_out = tf.Variable(tf.random_normal([512, 10]))
y_ = tf.matmul(h1, W_out)
# cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(y_, y)
cross_entropy = tf.reduce_sum(- y * tf.log(y_) - (1 - y) * tf.log(1 - y_), 1)
loss = tf.reduce_mean(cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# train
with tf.Session() as s:
s.run(tf.initialize_all_variables())
for i in range(10000):
batch_x, batch_y = mnist.train.next_batch(100)
s.run(train_step, feed_dict={x: batch_x, y: batch_y})
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_x, y: batch_y})
print('step {0}, training accuracy {1}'.format(i, train_accuracy))
However, it does not work. I think the definition for the layers are correct, but the problem is in the cross_entropy. If I use the first one, the one got commented out, the model converges quickly; but if I use the 2nd one, which I think/hope is the translation of the previous equation, the model won't converge.
If you want to take a look at the cost equation, you can find it at here.
Update
I have implemented this same MLP model using numpy and scipy, and it works.
In the tensorflow code, I added a print line in the training loop, and I found out that all the elements in y_
are nan...I think it is caused by arithmetic overflow or something alike.