I am currently working on a machine learning project where - given a data matrix Z
and a vector rho
- I have to compute the value and slope of the logistic loss function at rho
. The computation involves basic matrix-vector multiplication and log/exp operations, with a trick to avoid numerical overflow (described in this previous post).
I am currently doing this in Python using NumPy as shown below (as a reference, this code runs in 0.2s). Although this works well, I would like to speed it up since I call the function multiple times in my code (and it represents over 90% of the computation involved in my project).
I am looking for any way to improve the runtime of this code without parallelization (i.e. only 1 CPU). I am happy using any publicly available package in Python, or calling C or C++ (since I have heard that this improves runtimes by an order of magnitude). Preprocessing the data matrix Z
would also be OK. Some things that could be exploited for better computation are that the vector rho
is usually sparse (with around 50% of entries = 0) and there are usually far more rows than columns (in most cases n_cols <= 100
)
import time
import numpy as np
np.__config__.show() #make sure BLAS/LAPACK is being used
np.random.seed(seed = 0)
#initialize data matrix X and label vector Y
n_rows, n_cols = 1e6, 100
X = np.random.random(size=(n_rows, n_cols))
Y = np.random.randint(low=0, high=2, size=(n_rows, 1))
Y[Y==0] = -1
Z = X*Y # all operations are carried out on Z
def compute_logistic_loss_value_and_slope(rho, Z):
#compute the value and slope of the logistic loss function in a way that is numerically stable
#loss_value: (1 x 1) scalar = 1/n_rows * sum(log( 1 .+ exp(-Z*rho))
#loss_slope: (n_cols x 1) vector = 1/n_rows * sum(-Z*rho ./ (1+exp(-Z*rho))
#see also: https://stackoverflow.com/questions/20085768/
scores = Z.dot(rho)
pos_idx = scores > 0
exp_scores_pos = np.exp(-scores[pos_idx])
exp_scores_neg = np.exp(scores[~pos_idx])
#compute loss value
loss_value = np.empty_like(scores)
loss_value[pos_idx] = np.log(1.0 + exp_scores_pos)
loss_value[~pos_idx] = -scores[~pos_idx] + np.log(1.0 + exp_scores_neg)
loss_value = loss_value.mean()
#compute loss slope
phi_slope = np.empty_like(scores)
phi_slope[pos_idx] = 1.0 / (1.0 + exp_scores_pos)
phi_slope[~pos_idx] = exp_scores_neg / (1.0 + exp_scores_neg)
loss_slope = Z.T.dot(phi_slope - 1.0) / Z.shape[0]
return loss_value, loss_slope
#initialize a vector of integers where more than half of the entries = 0
rho_test = np.random.randint(low=-10, high=10, size=(n_cols, 1))
set_to_zero = np.random.choice(range(0,n_cols), size =(np.floor(n_cols/2), 1), replace=False)
rho_test[set_to_zero] = 0.0
start_time = time.time()
loss_value, loss_slope = compute_logistic_loss_value_and_slope(rho_test, Z)
print "total runtime = %1.5f seconds" % (time.time() - start_time)