I am running multivariate mixed model in R by using nlme
package. Suppose that x and y are responses variables for longitudinal data which assumed that the error within group is correlated. The residual error matrix is presented as:
So my question is how to involve the correlation into lme
function?
I tried commands corr = corComSymm(from =~ 1 | x)
or corr = corAR1(from =~ 1 | x)
but did not work!
here en example:
# visiting time by months
time = rep(c(0,3,6,9),time = 4, 200)
# subjects
subject = rep(1:50, each = 4)
# first response variable "identity"
x = c(rep(0, 100), rep(1,100))
# second response variable "identity"
y = c(rep(1, 100), rep(0,100))
# values of both reponses variables (x_1, x_2)
value = c(rnorm(100,20,1),rnorm(100,48,1))
# variables refer to reponses variables (x_1, x_2)
variable = factor(c(rep(0,150),rep(1,50)), label=c("X","Y"))
df = data.frame(subject , time, x,y,value, variable)
library(nlme)
# fit the model that each response variable has intercept and slope (time) for each random and fixed effects
# as well as fixed effects slopes for sex and lesion, and each response has different variance
f= lme(value ~ -1 + x + y + x:time + y:time , random = ~ -1 + (x + y) + time:( x + y)|subject ,
weights = varIdent(form=~1| x),corr = corAR1(from = ~ 1|x), control=lmeControl(opt="optim"), data =df)
Error in corAR1(from = ~1 | x) : unused argument (from = ~1 | x)
Any suggestions?