I have a code to try to use Non Linear SVM (RBF kernel).
raw_data1 = open("/Users/prateek/Desktop/Programs/ML/Dataset.csv")
raw_data2 = open("/Users/prateek/Desktop/Programs/ML/Result.csv")
dataset1 = np.loadtxt(raw_data1,delimiter=",")
result1 = np.loadtxt(raw_data2,delimiter=",")
clf = svm.NuSVC(kernel='rbf')
clf.fit(dataset1,result1)
However, when I try to fit, I get the error
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/prateek/Desktop/Programs/ML/lib/python2.7/site-packages/sklearn/svm/base.py", line 193, in fit
fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
File "/Users/prateek/Desktop/Programs/ML/lib/python2.7/site-packages/sklearn/svm/base.py", line 251, in _dense_fit
max_iter=self.max_iter, random_seed=random_seed)
File "sklearn/svm/libsvm.pyx", line 187, in sklearn.svm.libsvm.fit (sklearn/svm/libsvm.c:2098)
ValueError: specified nu is infeasible
What is the reason for such an error?