I'm using ode45
to solve/plot a second-order differential equation in Matlab. My tspan
is from 0 to 0.25. But the initial conditions near zero are ill-defined (slope goes to infinity, complex values). The conditions near 0.25 are well defined (both slope and value are zero).
Questions:
Can I reverse
tspan
, and use the "final conditions" as initial conditions?Well, I know I can do it (see code below), and I get a plot that looks like what I expect, but is this a valid thing to do in general? Am I getting lucky in this one case?
ode45
provides numerical solutions and is not exact. Am I likely to have larger error after reversingtspan
?
Here's my code, which should run standalone:
function ReverseTspan()
% solve diff-eq backward from tspan end to tspan start using ode45()
% - Good initial conditions at the end, but not start.
% - Is this a valid thing to do?
% clean slate
clc; clear all; close all;
% tspan - reversed!
R = 0.25:-0.001:0;
% initial values
hinits=[0.0000001;0];
% solve
[R,v] = ode45(@equ7,R,hinits);
% strip imaginary values (can't plot 'em)
v(find(real(v)~=v)) = NaN;
% plot first column
plot(R,v(:,1));
function vprime = equ7(R,v);
% Solve second order non-linear differential equation 7:
% v''(R) + 2/R*v'(R) = K_plus/(R^2)*( v^(-1/2) - lamda_plus*(1-v)^(-1/2)
%
% Matlab ode45 only likes first derivatives, so let:
% v_1(R) = v(R)
% v_2(R) = v'(R)
%
% And create a system of first order diff eqs:
% v_1'(R) = v_2(R)
% v_2'(R) = -2/R*v_2(R) + K_plus/(R^2)*( v_1(R)^(-1/2) - lamda_plus*(1-v_1(R))^(-1/2)
%
% Constant Parameters:
K_plus = 0.0859;
lambda_plus = 3.7;
% Build result in pieces for easier debugging of problematic terms
int1 = 1 - v(1);
int2 = int1^(-1/2);
int3 = v(1)^(-1/2);
int4 = K_plus/(R^2);
vprime2 = -2/R*v(2);
vprime2 = vprime2 + int4*( int3 - lambda_plus*(int2) );
vprime=[v(2); vprime2 ];