Neither C nor C++ have a built-in string data type.
When the compiler finds, during the compilation, a double-quoted strings is implicitly referred (see the code below), the string itself is stored in program code/text and generates code to create even character array:
- The array is created in static storage because it must persist to be referred later.
- The array is made to constant because it must always contain the original data (Hello).
So at last, what you have is const char * to this constant static character array.
const char* v()
{
char* text = “Hello”;
return text;
// Above code can be reduced to:
// return “Hello”;
}
During the program run, when the control finds opening bracket, it creates “text”, the char* pointer, in the stack and constant array of 6 elements (including the null terminator ‘\0’ at the end) in static memory area. When control finds next line (char* text = “Hello”;), the starting address of the 6 element array is assigned to “text”. In next line (return text;), it returns “text”. With the closing bracket “text” will disappear from the stack, but array is still in the static memory area.
You need not to make return type const. But if you try to change the value in static array using non constant char* it will still give you an error during the run time because the array is constant. So, it’s always good to make return constant to make sure, it cannot be referred by non constant pointer.
But if the compiler finds a double-quoted strings is explicitly referred as an array, the compiler assumes that the programmer is going to (smartly) handle it. See the following wrong example:
const char* v()
{
char text[] = “Hello”;
return text;
}
During the compilation, compiler checks, quoted text and save it as it is in the code to fill the generated array during the runt time. Also, it calculate the array size, in this case again as 6.
During the program run, with the open bracket, the array “text[]” with 6 elements is created in stack. But no initialization. When the code finds (char text[] = “Hello”;), the array is initialized (with the text in compiled code). So array is now on the stack. When the compiler finds (return text;), it returns the starting address of the array “text”. When the compiler find the closing bracket, the array disappears from the stack. So no way to refer it by the return pointer.
Most standard library functions still take only char * (or const char *) parameters.
The Standard C++ library has a powerful class called string for manipulating text. The internal data structure for string is character arrays. The Standard C++ string class is designed to take care of (and hide) all the low-level manipulations of character arrays that were previously required of the C programmer. Note that std::string is a class:
- You can implicitly convert a char * into std::string because the
latter has a constructor to do that.
- You can explicitly convert a std::string into a const char * by using the c_str() method.