EDIT: looks like this was already answered before here
It didn't show up in my searches because I didn't know the right nomenclature. I'll leave the question here for now in case someone arrives here because of the constraints.
I'm trying to optimize a function which is flat on almost all points ("steps function", but in a higher dimension).
The objective is to optimize a set of weights, that must sum to one, and are the parameters of a function which I need to minimize.
The problem is that, as the function is flat at most points, gradient techniques fail because they immediately converge on the starting "guess".
My hypothesis is that this could be solved with (a) Annealing or (b) Genetic Algos. Scipy sends me to basinhopping. However, I cannot find any way to use the constraint (the weights must sum to 1) or ranges (weights must be between 0 and 1) using scipy.
Actual question: How can I solve a minimization problem without gradients, and also use constraints and ranges for the input variables?
The following is a toy example (evidently this one could be solved using the gradient):
# import minimize
from scipy.optimize import minimize
# define a toy function to minimize
def my_small_func(g):
x = g[0]
y = g[1]
return x**2 - 2*y + 1
# define the starting guess
start_guess = [.5,.5]
# define the acceptable ranges (for [g1, g2] repectively)
my_ranges = ((0,1),(0,1))
# define the constraint (they must always sum to 1)
def constraint(g):
return g[0] + g[1] - 1
cons = {'type':'eq', 'fun': constraint}
# minimize
minimize(my_small_func, x0=start_guess, method='SLSQP',
bounds=rranges, constraints=cons)