Here's a post about cosine similarity in Python: Cosine Similarity between 2 Number Lists.
I rewrote this answer in Numpy and Theano:
def cos_sim_numpy(v1, v2):
numerator = sum(v1*v2)
denominator = math.sqrt(sum(v1**2)*sum(v2**2))
return numerator/denominator
def compile_cos_sim_theano():
v1 = theano.tensor.vector(dtype=theano.config.floatX)
v2 = theano.tensor.vector(dtype=theano.config.floatX)
numerator = theano.tensor.sum(v1*v2)
denominator = theano.tensor.sqrt(theano.tensor.sum(v1**2)*theano.tensor.sum(v2**2))
return theano.function([v1, v2], numerator/denominator)
cos_sim_theano_fn = compile_cos_sim_theano()
v1 = numpy.asarray([3,45,7,2], dtype=np.float32)
v2 = numpy.asarray([2,54,13,15], dtype=np.float32)
print cos_sim_theano_fn(v1, v2), cos_sim_numpy(v1, v2)
Output: 0.972284251712 0.972284251712