Here is a simple programming problem from SPOJ: http://www.spoj.com/problems/PROBTRES/.
Basically, you are asked to output the biggest Collatz cycle for numbers between i and j. (Collatz cycle of a number $n$ is the number of steps to eventually get from $n$ to 1.)
I have been looking for a Haskell way to solve the problem with comparative performance than that of Java or C++ (so as to fits in the allowed run-time limit). Although a simple Java solution that memoizes the cycle length of any already computed cycles will work. I haven't been successful at applying the idea to obtain a Haskell solution.
I have tried the Data.Function.Memoize, as well as home-brewed log time memoization technique using the idea from this post: Memoization in Haskell?. Unfortunately, memoization actually makes the computation of cycle(n) even slower. I believe the slow down comes from the overhead of haskell way. (I tried running with the compiled binary code, instead of interpreting.)
I also suspect that simply iterating numbers from i to j can be costly ($i,j\le10^6$). So I even tried precompute everything for the range query, using idea from http://blog.openendings.net/2013/10/range-trees-and-profiling-in-haskell.html. However, this still gives "Time Limit Exceeding" error.
Can you help to inform a neat competitive Haskell program for this?
Thanks!