Combine the Douglas-peucker algorithm with iteration, and consider the remained points as a judge criteria.
Here is my algorithm, array 'points' stores the points of the trajectory.Integer 'd' is the threshold.
public static Point[] divi(Point[] points,double d)
{
System.out.println("threshold"+d);
System.out.println("the nth divi iteration");
int i = 0;
Point[] p1 = new Point[points.length];
for (i = 0;i<points.length;i++)
p1[i] = points[i];
compress(p1, 0,p1.length - 1,d); //first compression
int size = 0;
for (Point p : p1) //trajectory after compression
if(p != null)
size ++;
System.out.println("size of points"+size);
if(size<=200 && size>=100)
return p1;
else if(size>200)
return divi(p1,d + d/2.0);
else
return divi(points,d/2.0);
}
public static void compress(Point[] points,int m, int n,double D)
{
System.out.println("threshold"+D);
System.out.println("startIndex"+m);
System.out.println("endIndex"+n);
while (points[m] == null)
m ++;
Point from = points[m];
while(points[n] == null)
n--;
Point to = points[n];
double A = (from.x() - to.x()) /(from.y() - to.y());
/** -
* 由起始点和终止点构成的直线方程一般式的系数
*/
double B = -1;
double C = from.x() - A *from.y();
double d = 0;
double dmax = 0;
if (n == m + 1)
return;
List<Double> distance = new ArrayList<Double>();
for (int i = m + 1; i < n; i++) {
if (points[i] ==null)
{
distance.add(0.0);
continue;
}
else
{
Point p = points[i];
d = Math.abs(A * (p.y()) + B * (p.x()) + C) / Math.sqrt(Math.pow(A, 2) + Math.pow(B, 2));
distance.add(d);
}
}
dmax= Collections.max(distance);
if (dmax < D)
for(int i = n-1;i > m;i--)
points[i] = null;
else
{
int middle = distance.indexOf(dmax) + m + 1;
compress(points,m, middle,D);
compress(points,middle, n,D);
}
}