I'm trying to figure out how to build a "purely applicative parser" based on a simple parser implementation. The parser would not use monads in its implementation. I asked this question previously but mis-framed it so I'm trying again.
Here is the basic type and its Functor
, Applicative
and Alternative
implementations:
newtype Parser a = Parser { parse :: String -> [(a,String)] }
instance Functor Parser where
fmap f (Parser cs) = Parser (\s -> [(f a, b) | (a, b) <- cs s])
instance Applicative Parser where
pure = Parser (\s -> [(a,s)])
(Parser cs1) <*> (Parser cs2) = Parser (\s -> [(f a, s2) | (f, s1) <- cs1 s, (a, s2) <- cs2 s1])
instance Alternative Parser where
empty = Parser $ \s -> []
p <|> q = Parser $ \s ->
case parse p s of
[] -> parse q s
r -> r
The item
function takes a character off the stream:
item :: Parser Char
item = Parser $ \s ->
case s of
[] -> []
(c:cs) -> [(c,cs)]
At this point, I want to implement digit
. I can of course do this:
digit = Parser $ \s ->
case s of
[] -> []
(c:cs) -> if isDigit c then [(c, cs)] else []
but I'm replicating the code of item
. I'd like to implement digit
based on item
.
How do I go about implementing digit
, using item
to take a character off the stream and then checking to see if the character is a digit without bringing monadic concepts into the implementation?