This becomes a bit easier if you first define a Point
, then define your Line
in terms of 2 Point
s.
Now, to calculate a reliable (but unaffected by direction) hash of a Line
, make sure you order your points consistently when calculating the hash.
Putting this all together into a complete implementation (which also covers operator ==
and !=
):
public class Point
{
public double X { get; set; }
public double Y { get; set; }
protected bool Equals(Point other)
{
return X.Equals(other.X) && Y.Equals(other.Y);
}
public override bool Equals(object obj)
{
if (ReferenceEquals(null, obj)) return false;
if (ReferenceEquals(this, obj)) return true;
if (obj.GetType() != this.GetType()) return false;
return Equals((Point) obj);
}
public override int GetHashCode()
{
unchecked
{
return (X.GetHashCode()*397) + Y.GetHashCode();
}
}
public static bool operator ==(Point left, Point right)
{
return Equals(left, right);
}
public static bool operator !=(Point left, Point right)
{
return !Equals(left, right);
}
}
public class Line
{
public Point Point1 { get; set; }
public Point Point2 { get; set; }
protected bool Equals(Line other)
{
return Equals(Point1, other.Point1) && Equals(Point2, other.Point2)
|| Equals(Point1, other.Point2) && Equals(Point2, other.Point1);
}
public override bool Equals(object obj)
{
if (ReferenceEquals(null, obj)) return false;
if (ReferenceEquals(this, obj)) return true;
if (obj.GetType() != this.GetType()) return false;
return Equals((Line) obj);
}
public override int GetHashCode()
{
unchecked
{
var orderedPoints =
new[] {Point1, Point2}.OrderBy(p => p != null ? p.X : 0)
.ThenBy(p => p != null ? p.Y : 0).ToList();
var p1 = orderedPoints[0];
var p2 = orderedPoints[1];
return ((p1 != null ? p1.GetHashCode() : 0)*397)
+ (p2 != null ? p2.GetHashCode() : 0);
}
}
public static bool operator ==(Line left, Line right)
{
return Equals(left, right);
}
public static bool operator !=(Line left, Line right)
{
return !Equals(left, right);
}
}