This is similar to terminus' answer, but uses pipes for communication:
#include <unistd.h>
#include <stdint.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#if !defined(PTRACE_ATTACH) && defined(PT_ATTACH)
# define PTRACE_ATTACH PT_ATTACH
#endif
#if !defined(PTRACE_DETACH) && defined(PT_DETACH)
# define PTRACE_DETACH PT_DETACH
#endif
#ifdef __linux__
# define _PTRACE(_x, _y) ptrace(_x, _y, NULL, NULL)
#else
# define _PTRACE(_x, _y) ptrace(_x, _y, NULL, 0)
#endif
/** Determine if we're running under a debugger by attempting to attach using pattach
*
* @return 0 if we're not, 1 if we are, -1 if we can't tell.
*/
static int debugger_attached(void)
{
int pid;
int from_child[2] = {-1, -1};
if (pipe(from_child) < 0) {
fprintf(stderr, "Debugger check failed: Error opening internal pipe: %s", syserror(errno));
return -1;
}
pid = fork();
if (pid == -1) {
fprintf(stderr, "Debugger check failed: Error forking: %s", syserror(errno));
return -1;
}
/* Child */
if (pid == 0) {
uint8_t ret = 0;
int ppid = getppid();
/* Close parent's side */
close(from_child[0]);
if (_PTRACE(PTRACE_ATTACH, ppid) == 0) {
/* Wait for the parent to stop */
waitpid(ppid, NULL, 0);
/* Tell the parent what happened */
write(from_child[1], &ret, sizeof(ret));
/* Detach */
_PTRACE(PTRACE_DETACH, ppid);
exit(0);
}
ret = 1;
/* Tell the parent what happened */
write(from_child[1], &ret, sizeof(ret));
exit(0);
/* Parent */
} else {
uint8_t ret = -1;
/*
* The child writes a 1 if pattach failed else 0.
*
* This read may be interrupted by pattach,
* which is why we need the loop.
*/
while ((read(from_child[0], &ret, sizeof(ret)) < 0) && (errno == EINTR));
/* Ret not updated */
if (ret < 0) {
fprintf(stderr, "Debugger check failed: Error getting status from child: %s", syserror(errno));
}
/* Close the pipes here, to avoid races with pattach (if we did it above) */
close(from_child[1]);
close(from_child[0]);
/* Collect the status of the child */
waitpid(pid, NULL, 0);
return ret;
}
}
Trying the original code under OS X, I found waitpid (in the parent) would always return -1 with an EINTR (System call interrupted). This was caused by pattach, attaching to the parent and interrupting the call.
It wasn't clear whether it was safe to just call waitpid again (that seemed like it might behave incorrectly in some situations), so I just used a pipe to do the communication instead. It's a bit of extra code, but will probably work reliably across more platforms.
This code has been tested on OS X v10.9.3 (Mavericks), Ubuntu 14.04 (Trusty Tahr) (3.13.0-24-generic) and FreeBSD 10.0.
For Linux, which implements process capabilities, this method will only work if the process has the CAP_SYS_PTRACE
capability, which is typically set when the process is run as root.
Other utilities (gdb
and lldb
) also have this capability set as part of their filesystem metadata.
You can detect whether the process has effective CAP_SYS_PTRACE
by linking against -lcap
,
#include <sys/capability.h>
cap_flag_value_t value;
cap_t current;
/*
* If we're running under Linux, we first need to check if we have
* permission to to ptrace. We do that using the capabilities
* functions.
*/
current = cap_get_proc();
if (!current) {
fprintf(stderr, "Failed getting process capabilities: %s\n", syserror(errno));
return -1;
}
if (cap_get_flag(current, CAP_SYS_PTRACE, CAP_PERMITTED, &value) < 0) {
fprintf(stderr, "Failed getting permitted ptrace capability state: %s\n", syserror(errno));
cap_free(current);
return -1;
}
if ((value == CAP_SET) && (cap_get_flag(current, CAP_SYS_PTRACE, CAP_EFFECTIVE, &value) < 0)) {
fprintf(stderr, "Failed getting effective ptrace capability state: %s\n", syserror(errno));
cap_free(current);
return -1;
}