This contour plot, made with the Igor program, is popular in atmospheric chemistry and pollution studies:
I'm trying to recreate it with R for a friend who wants to stop using Igor, and we can't quite get it. Here's the dataset (the same data used to make the plot with Igor), and here's what I've got so far to make the plot with R:
# read in the data
dat <- read.csv("contour_plot_data.csv")
# focus on the untransformed values
dat <- dat[, 1:108]
# get Diameter value from col names
Diameter <- as.numeric(gsub("X", "", names(dat)[-1]))
# interpolate between the Diameter values for a smoother contour,
# a seperate interpolation for each row (date value)
# this takes a moment or two...
interp <- seq(min(Diameter), max(Diameter), 0.2)
dat_interp <- data.frame(matrix(0, ncol = length(interp), nrow = nrow(dat)))
for(i in 1:nrow(dat)){
# get the values from row i
vec <- unlist(dat[i, 2:108], use.names = FALSE)
# compute loess interpolations
lo <- loess(vec ~ Diameter)
# predict interpolated values
pr <- predict(lo, newdata = data.frame(Diameter = interp))
# store in a data frame
df <- data.frame(ct = unname(pr), Diameter = interp)
# add as new row to new data frame
dat_interp[i, ] <- df$ct
print(i) # so we can see that it's working
}
# add date col and col names to the interpolated data
names(dat_interp) <- interp
dat_interp$date <- as.character(dat$Time)
# melt data into long format
# see http://www.cookbook-r.com/Manipulating_data/Converting_data_between_wide_and_long_format/
library(tidyr)
gather_cols <- interp
dat_long <- gather_(dat_interp, "Diameter", "dN_dlogDp", gather_cols)
# we want diameter as a numeric
dat_long$Diameter <- as.numeric(as.character(dat_long$Diameter))
# we want date as a date format
x <- as.character(dat_long$date)
date_ <- as.Date(x, format = "%d/%m/%Y")
time_ <- gsub(" ", "", substr(x, nchar(x) - 4, nchar(x)))
dat_long$date_time <- as.POSIXct(paste0(date_, " ", time_))
# The Igor plot seems to use log dN_dlogDp values, so let's get those
dat_long$dN_dlogDp_log <- log10(dat_long$dN_dlogDp)
dat_long$dN_dlogDp_log <- ifelse(dat_long$dN_dlogDp_log == "NaN", 0, dat_long$dN_dlogDp_log)
# get on with plottong...
library(ggplot2)
library(scales)
labels_breaks <- seq(0, max(Diameter), 100)
mytheme <- theme_bw(base_size = 14) + theme(aspect.ratio = 1/4)
ggplot(dat_long, aes(y = Diameter, x = date_time, fill=dN_dlogDp_log)) +
geom_raster(interpolate = TRUE) +
scale_fill_gradientn(name=expression(log(dN/dlogD[p])), colours = rainbow(7)) +
scale_y_continuous(expand = c(0,0), breaks = labels_breaks ) +
scale_x_datetime(expand = c(0,0), breaks = date_breaks("12 hours")) +
ylab("Diameter (nm)") +
xlab("Date and time") +
mytheme
My plot could do with a little more finessing with labels and tick marks, etc. However, my main question is why my contour fill looks so different from the Igor plot. The scale seems reversed, and the interpolation looks very different.
How can I make my plot look more like the Igor plot?
Note that these other questions of mine are closely related to the task of recreating this plot:
And after I asked this question I have been keeping an updated gist of R code that combines details from the answers to these questions, and successfully replicates these plots (example output included in the gist). That gist is here: https://gist.github.com/benmarwick/9a54cbd325149a8ff405.
UPDATE I've now made a package that will produce these plots: https://github.com/benmarwick/smps