I have a table for experimental protocols which includes foreign keys for a number of other tables (most prominently it includes a number of Incubation
entries). The structure looks like this, verbatim:
class DNAExtractionProtocol(Base):
__tablename__ = 'dna_extraction_protocols'
id = Column(Integer, primary_key=True)
code = Column(String, unique=True)
name = Column(String)
sample_mass = Column(Float)
mass_unit_id = Column(String, ForeignKey('measurement_units.id'))
mass_unit = relationship("MeasurementUnit", foreign_keys=[mass_unit_id])
digestion_buffer_id = Column(String, ForeignKey("solutions.id"))
digestion_buffer = relationship("Solution", foreign_keys=[digestion_buffer_id])
digestion_buffer_volume = Column(Float)
digestion_id = Column(Integer, ForeignKey("incubations.id"))
digestion = relationship("Incubation", foreign_keys=[digestion_id])
lysis_buffer_id = Column(String, ForeignKey("solutions.id"))
lysis_buffer = relationship("Solution", foreign_keys=[lysis_buffer_id])
lysis_buffer_volume = Column(Float)
lysis_id = Column(Integer, ForeignKey("incubations.id"))
lysis = relationship("Incubation", foreign_keys=[lysis_id])
proteinase_id = Column(String, ForeignKey("solutions.id"))
proteinase = relationship("Solution", foreign_keys=[proteinase_id])
proteinase_volume = Column(Float)
inactivation_id = Column(Integer, ForeignKey("incubations.id"))
inactivation = relationship("Incubation", foreign_keys=[inactivation_id])
cooling_id = Column(Integer, ForeignKey("incubations.id"))
cooling = relationship("Incubation", foreign_keys=[cooling_id])
centrifugation_id = Column(Integer, ForeignKey("incubations.id"))
centrifugation = relationship("Incubation", foreign_keys=[centrifugation_id])
volume_unit_id = Column(String, ForeignKey('measurement_units.id'))
volume_unit = relationship("MeasurementUnit", foreign_keys=[volume_unit_id])
Now, given the unique code
attribution, I would like to get a Pandas dataframe (or rather a Series) which allows me to select not only any of the attributes of the corresponding entry in the "dna_extraction_protocols"
table, but also in the related tables.
I am currently selecting a pandas dataframe with:
sql_query = session.query(DNAExtractionProtocol).join(DNAExtractionProtocol.digestion_buffer).filter(DNAExtractionProtocol.code == code)
for item in sql_query:
pass
mystring = str(sql_query)
mydf = pd.read_sql_query(mystring,engine,params=[code])
print(mydf)
But this only allows me to select the IDs of the related keys. I can select mydf["dna_extraction_protocols_mass_unit_id"]
- but I would also like to be able to select mydf["dna_extraction_protocols_mass_unit_long_name"]
, given the following available keys on the "measurement_units"
table:
class MeasurementUnit(Base):
__tablename__ = "measurement_units"
id = Column(Integer, primary_key=True)
code = Column(String, unique=True)
long_name = Column(String)
siunitx = Column(String)