I am reading the book Thinking as Computation and wrote the code as chapter 9.4:
plan(L) :-
initial_state(I),
goal_state(G),
reachable(I, L, G).
initial_state([]).
legal_move(S, A, [A | S]) :-
poss(A, S).
goal_state(S) :-
has_bananas(S).
reachable(S, [], S).
reachable(S1, [M | L], S3) :-
legal_move(S1, M, S2),
reachable(S2, L, S3).
location(box, loc3, []).
location(box, L, [push(L) | _]).
location(box, L, [A | S]) :-
\+ A = push(L),
location(box, L, S).
location(bananas, loc1, _).
location(monkey, loc2, []).
location(monkey, L, [push(L) | _]).
location(monkey, L, [go(L) | _]).
location(monkey, L, [climb_off | S]) :-
location(monkey, L, S).
location(monkey, L, [A | S]) :-
\+ A = push(_), \+ A = go(_), location(monkey, L, S).
on_box([climb_on | _]).
on_box([A | S]) :- \+ A = climb_off, on_box(S).
has_bananas([grab | S]) .
has_bananas([_ | S]) :- has_bananas(S).
poss(climb_off, S) :- on_box(S).
poss(go(_), S) :- \+ on_box(S).
poss(grab, S) :-
on_box(S), location(box, L, S), location(bananas, L, S).
poss(push(_), S) :- poss(climb_on, S).
poss(climb_on, S) :-
\+ on_box(S), location(box, L, S), location(monkey, L, S).
But I found that the program never stops... After printing the stack info, I found that goal_state
generates lists of infinite length. I tried to constrain the length of the lists in has_banana
has_bananas([grab | S], N) :- length(S, NS), NS is N - 1.
has_bananas([_ | S], N) :- \+ N = 0, has_bananas(S, N - 1).
which N
refers to the length of L
in plan(L)
(e.g. N
is 4 when query plan([M1, M2, M3, M4])
) But it doesn't work.
Is there any solution?