I'm writing a library where I want to have some basic NxN matrix functionality that doesn't have any dependencies and it is a bit of a learning project. I'm comparing my performance to Eigen. I've been able to be pretty equal and even beat its performance on a couple front with SSE2 and with AVX2 beat it on quite a few fronts (it only uses SSE2 so not super surprising).
My issue is I'm using Gaussian Elimination to create an Upper Diagonalized matrix then multiplying the diagonal to get the determinant.I beat Eigen for N < 300 but after that Eigen blows me away and it just gets worse as the matrices get bigger. Given all the memory is accessed sequentially and the compiler dissassembly doesn't look terrible I don't think it is an optimization issue.
There is more optimization that can be done but the timings look much more like an algorithmic timing complexity issue or there is a major SSE advantage I'm not seeing. Simply unrolling the loops a bit hasn't done much for me when trying that.
Is there a better algorithm for calculating determinants?
Scalar code
/*
Warning: Creates Temporaries!
*/
template<typename T, int ROW, int COLUMN> MML_INLINE T matrix<T, ROW, COLUMN>::determinant(void) const
{
/*
This method assumes square matrix
*/
assert(row() == col());
/*
We need to create a temporary
*/
matrix<T, ROW, COLUMN> temp(*this);
/*We convert the temporary to upper triangular form*/
uint N = row();
T det = T(1);
for (uint c = 0; c < N; ++c)
{
det = det*temp(c,c);
for (uint r = c + 1; r < N; ++r)
{
T ratio = temp(r, c) / temp(c, c);
for (uint k = c; k < N; k++)
{
temp(r, k) = temp(r, k) - ratio * temp(c, k);
}
}
}
return det;
}
AVX2
template<> float matrix<float>::determinant(void) const
{
/*
This method assumes square matrix
*/
assert(row() == col());
/*
We need to create a temporary
*/
matrix<float> temp(*this);
/*We convert the temporary to upper triangular form*/
float det = 1.0f;
const uint N = row();
const uint Nm8 = N - 8;
const uint Nm4 = N - 4;
uint c = 0;
for (; c < Nm8; ++c)
{
det *= temp(c, c);
float8 Diagonal = _mm256_set1_ps(temp(c, c));
for (uint r = c + 1; r < N;++r)
{
float8 ratio1 = _mm256_div_ps(_mm256_set1_ps(temp(r,c)), Diagonal);
uint k = c + 1;
for (; k < Nm8; k += 8)
{
float8 ref = _mm256_loadu_ps(temp._v + c*N + k);
float8 r0 = _mm256_loadu_ps(temp._v + r*N + k);
_mm256_storeu_ps(temp._v + r*N + k, _mm256_fmsub_ps(ratio1, ref, r0));
}
/*We go Scalar for the last few elements to handle non-multiples of 8*/
for (; k < N; ++k)
{
_mm_store_ss(temp._v + index(r, k), _mm_sub_ss(_mm_set_ss(temp(r, k)), _mm_mul_ss(_mm256_castps256_ps128(ratio1),_mm_set_ss(temp(c, k)))));
}
}
}
for (; c < Nm4; ++c)
{
det *= temp(c, c);
float4 Diagonal = _mm_set1_ps(temp(c, c));
for (uint r = c + 1; r < N; ++r)
{
float4 ratio = _mm_div_ps(_mm_set1_ps(temp[r*N + c]), Diagonal);
uint k = c + 1;
for (; k < Nm4; k += 4)
{
float4 ref = _mm_loadu_ps(temp._v + c*N + k);
float4 r0 = _mm_loadu_ps(temp._v + r*N + k);
_mm_storeu_ps(temp._v + r*N + k, _mm_sub_ps(r0, _mm_mul_ps(ref, ratio)));
}
float fratio = _mm_cvtss_f32(ratio);
for (; k < N; ++k)
{
temp(r, k) = temp(r, k) - fratio*temp(c, k);
}
}
}
for (; c < N; ++c)
{
det *= temp(c, c);
float Diagonal = temp(c, c);
for (uint r = c + 1; r < N; ++r)
{
float ratio = temp[r*N + c] / Diagonal;
for (uint k = c+1; k < N;++k)
{
temp(r, k) = temp(r, k) - ratio*temp(c, k);
}
}
}
return det;
}