Assuming A
as the input array, here's one approach using slicing
and boolean indexing
-
# Get west, north, east & south elements for [1:-1,1:-1] region of input array
W = A[1:-1,:-2]
N = A[:-2,1:-1]
E = A[1:-1,2:]
S = A[2:,1:-1]
# Check if all four arrays have 100 for that same element in that region
mask = (W == 100) & (N == 100) & (E == 100) & (S == 100)
# Use the mask to set corresponding elements in a copy version as 100s
out = A.copy()
out[1:-1,1:-1][mask] = 100
Sample run -
In [90]: A
Out[90]:
array([[220, 93, 205, 82, 23, 210, 22],
[133, 228, 100, 27, 210, 186, 246],
[196, 100, 73, 100, 86, 100, 53],
[195, 131, 100, 142, 100, 214, 100],
[247, 73, 117, 116, 24, 100, 50]])
In [91]: W = A[1:-1,:-2]
...: N = A[:-2,1:-1]
...: E = A[1:-1,2:]
...: S = A[2:,1:-1]
...: mask = (W == 100) & (N == 100) & (E == 100) & (S == 100)
...:
...: out = A.copy()
...: out[1:-1,1:-1][mask] = 100
...:
In [92]: out
Out[92]:
array([[220, 93, 205, 82, 23, 210, 22],
[133, 228, 100, 27, 210, 186, 246],
[196, 100, 100, 100, 86, 100, 53],
[195, 131, 100, 142, 100, 100, 100],
[247, 73, 117, 116, 24, 100, 50]])
Such problems are seen largely in signal-processing/image-processing domain. So, you can use 2D convolution
too for an alternative solution, like so -
from scipy import signal
from scipy import ndimage
# Use a structuring elements with north, west, east and south elements as 1s
strel = ndimage.generate_binary_structure(2, 1)
# 2D Convolve to get 4s at places that are surrounded by 1s
mask = signal.convolve2d((A==100).astype(int),strel,'same')==4
# Use the mask to set corresponding elements in a copy version as 100
out = A.copy()
out[mask] = 100
Sample run -
In [119]: A
Out[119]:
array([[108, 184, 0, 176, 131, 86, 201],
[ 22, 47, 100, 78, 151, 196, 221],
[185, 100, 142, 100, 121, 100, 24],
[201, 101, 100, 138, 100, 20, 100],
[127, 227, 217, 19, 206, 100, 43]])
In [120]: strel = ndimage.generate_binary_structure(2, 1)
...: mask = signal.convolve2d((A==100).astype(int),strel,'same')==4
...:
...: out = A.copy()
...: out[mask] = 100
...:
In [121]: out
Out[121]:
array([[108, 184, 0, 176, 131, 86, 201],
[ 22, 47, 100, 78, 151, 196, 221],
[185, 100, 100, 100, 121, 100, 24],
[201, 101, 100, 138, 100, 100, 100],
[127, 227, 217, 19, 206, 100, 43]])
A more straight-forward approach would be with ndimage.binary_closing
, which is exactly the intended operation of closing
here. So, another alternative way to get the mask would be -
strel = ndimage.generate_binary_structure(2, 1)
mask = ndimage.binary_closing(A==100, structure=strel)