This is a scikit-learn error that I get when I do
my_estimator = LassoLarsCV(fit_intercept=False, normalize=False, positive=True, max_n_alphas=1e5)
Note that if I decrease max_n_alphas from 1e5 down to 1e4 I do not get this error any more.
Anyone has an idea on what's going on?
The error happens when I call
my_estimator.fit(x, y)
I have 40k
data points in 40
dimensions.
The full stack trace looks like this
File "/usr/lib64/python2.7/site-packages/sklearn/linear_model/least_angle.py", line 1113, in fit
axis=0)(all_alphas)
File "/usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py", line 79, in __call__
y = self._evaluate(x)
File "/usr/lib64/python2.7/site-packages/scipy/interpolate/interpolate.py", line 498, in _evaluate
out_of_bounds = self._check_bounds(x_new)
File "/usr/lib64/python2.7/site-packages/scipy/interpolate/interpolate.py", line 525, in _check_bounds
raise ValueError("A value in x_new is below the interpolation "
ValueError: A value in x_new is below the interpolation range.