Approach #1: Iterative "brute-force" of all possible combinations
Below is one possible algorithm that illustrates how to solve the problem. The code itself should be self-explanatory, but the idea is that we test all possible combinations of lists until a valid one is found (hence we don't encounter the problem you described where we mistakenly choose lists based on their length).
function varargout = q36323802
R = [0 1 2 3 4 5 6 7 8 9]; %// Reference List
L = {... // As per Dan's suggestion:
[0 1 3 5 6 7 9]
[0 1 2 3 4]
[5 6 7 8 9]
[1 2 3 4]
[1 5 7 8]
};
out = []; %// Initialize output
%% // Brute-force approach:
nLists = numel(L);
for indN = 1:nLists
setCombinationsToCheck = nchoosek(1:nLists,indN);
for indC = 1:size(setCombinationsToCheck,1)
u = unique(cat(2,L{setCombinationsToCheck(indC,:)}));
if all(ismember(R,u))
out = setCombinationsToCheck(indC,:);
disp(['The minimum number of required sets is ' num2str(indN) ...
', and their indices are: ' num2str(out)]);
return;
end
end
end
disp('No amount of lists found to cover the reference.');
if nargout > 0
varargout{1} = out;
end
For your example the output is:
The minimum number of required sets is 2, and their indices are: 2 3
Note(s):
- This method does some redundant computations by not using lists of length
n-1
in iteration n
, which were already found in previous iterations (when applicable). A recursive solution may work in this case.
- There is probably a way to vectorize this, which I did not really think about in depth.
- I assumed all inputs are row vectors. There would have to be some extra steps if this is not the case.
Thanks go to Adiel for suggesting some improvements, and for Amro for finding some bugs!
Approach #2: Tree search Experimental
I've attempted to also build a recursive solver. Now it finds a solution, but it's not general enough (actually the problem is that it only returns the first result, not necessarily the best result). The reasoning behind this approach is that we can treat your question as a tree search problem, and so we can employ search/pathfinding algorithms (see BFS, DFS, IDS etc.). I think the algorithm below is closest to DFS. As before, this should mainly illustrate an approach to solving your problem.
function q36323802_DFS(R,L)
%% //Input checking:
if nargin < 2 || isempty(L)
L = {... // As per Dan's suggestion:
[0 1 3 5 6 7 9]
[0 1 2 3 4]
[5 6 7 8 9]
[1 2 3 4]
[1 5 7 8]
};
end
if nargin < 1 || isempty(R)
R = [0 1 2 3 4 5 6 7 8 9]; %// Reference List
end
%% // Algorithm (DFS: breadth-first search):
out = DFS_search(R,L,0);
if isempty(out)
disp('No amount of lists found to cover the reference.');
else
disp(['The minimum number of required sets is ' num2str(numel(out)) ...
', and their indices are: ' num2str(out)]);
end
end
function out = DFS_search(R,L,depth)
%// Check to see if we should stop:
if isempty(R) || isempty(L)
% // Backtrack here?
out = [];
return;
end
if isnan(R)
out = [];
return;
end
nLists = numel(L);
reducedR = cellfun(@(R,L)setdiff(R,L),repmat({R},[nLists,1]),L,'UniformOutput',false)';
%'// We consider a case where the reduction had no effect as "hopeless" and
%// "drop" it.
isFullCoverage = cellfun(@isempty,reducedR);
isHopeless = cellfun(@(R)all(isnan(R)),reducedR) | cellfun(@(rR)isequal(rR,R),reducedR);
reducedR(isHopeless) = deal({NaN});
if all(isHopeless) && ~any(isFullCoverage)
out = [];
return
end
if any(isFullCoverage) %// Check current "breadth level"
out = find(isFullCoverage,1,'first');
return
else
for indB = 1:nLists
out = DFS_search(reducedR{indB},L,depth+1);
if ~isempty(out)
out = [indB out]; %#ok
%// TODO: test if one of the sets is covered by the others and remove it
%// from the list "out".
%// Also, keep track of the best path and only return (finally) if shortest
return
end
end
end
end