Is it possible to register a UDF (or function) written in Scala to use in PySpark ? E.g.:
val mytable = sc.parallelize(1 to 2).toDF("spam")
mytable.registerTempTable("mytable")
def addOne(m: Integer): Integer = m + 1
// Spam: 1, 2
In Scala, the following is now possible:
val UDFaddOne = sqlContext.udf.register("UDFaddOne", addOne _)
val mybiggertable = mytable.withColumn("moreSpam", UDFaddOne(mytable("spam")))
// Spam: 1, 2
// moreSpam: 2, 3
I would like to use "UDFaddOne" in PySpark like
%pyspark
mytable = sqlContext.table("mytable")
UDFaddOne = sqlContext.udf("UDFaddOne") # does not work
mybiggertable = mytable.withColumn("+1", UDFaddOne(mytable("spam"))) # does not work
Background: We are a team of developpers, some coding in Scala and some in Python, and would like to share already written functions. It would also be possible to save it into a library and import it.