I am purposely using the very same title as this question because I feel that the answer that was accepted does not account for a problem that I am stuck into.
I am looking for a way to detect if some class has some member variable. It is fundamental to note that I am looking for a variable, not a member function or anything else.
Here is the example provided in the question I linked:
template<typename T> struct HasX {
struct Fallback { int x; }; // introduce member name "x"
struct Derived : T, Fallback { };
template<typename C, C> struct ChT;
template<typename C> static char (&f(ChT<int Fallback::*, &C::x>*))[1];
template<typename C> static char (&f(...))[2];
static bool const value = sizeof(f<Derived>(0)) == 2;
};
struct A { int x; };
struct B { int X; };
int main() {
std::cout << HasX<A>::value << std::endl; // 1
std::cout << HasX<B>::value << std::endl; // 0
}
But we will get the very same output if we do something like
template<typename T> struct HasX {
struct Fallback { int x; }; // introduce member name "x"
struct Derived : T, Fallback { };
template<typename C, C> struct ChT;
template<typename C> static char (&f(ChT<int Fallback::*, &C::x>*))[1];
template<typename C> static char (&f(...))[2];
static bool const value = sizeof(f<Derived>(0)) == 2;
};
struct A {
void x()
{
}
};
struct B { int X; };
int main() {
std::cout << HasX<A>::value << std::endl; // 1
std::cout << HasX<B>::value << std::endl; // 0
}
(Please note that in the second example the int x
in A
was substituted with a member function void x()
).
I have no real idea on how to work around this problem. I partially fixed this by doing something like
template <bool, typename> class my_helper_class;
template <typename ctype> class my_helper_class <true, ctype>
{
static bool const value = std :: is_member_object_pointer <decltype(&ctype :: x)> :: value;
};
template <typename ctype> class my_helper_class <false, ctype>
{
static bool const value = false;
};
template <typename T> struct HasX
{
// ...
static bool const value = my_helper_class <sizeof(f <Derived>(0)) == 2, T> :: value;
};
Which actually selects if I am using an object. However, the above doesn't work if there are more overloaded functions with the same name x
in my class.
For example if I do
struct A
{
void x()
{
}
void x(int)
{
}
};
Then the pointer is not resolved successfully and the a call to HasX <A>
doesn't compile.
What am I supposed to do? Is there any workaround or simpler way to get this done?