I'm working on a project with big data and I get MemoryError often when I run my script. It contains a loop on a list of files which are read by my script and after 3 or 4 files, this error appears.
I thought write something like that :
with open("E:\New_Fields\liste_essai.txt", "r") as f :
fichier_entier = f.read()
files = fichier_entier.split("\n")
for fichier in files :
with open(fichier, 'r') :
# CONDITIONS
del var1
del var2
del var3
To this way, I can free memory to the next loop, that's to say, the next file.
But there is a method which delete all variables in my loop with just one command instead of make this process manually ? In my script, I have maybe 15 variables so from my point of view it's not optimized to remove each variable one after the other.
EDIT :
My list of files is like that :
E:\New_Fields\Field101_combined_final_roughcal.fits
E:\New_Fields\Field117_combined_final_roughcal.fits
E:\New_Fields\Field150_combined_final_roughcal.fits
E:\New_Fields\Field36_combined_final_roughcal.fits
E:\New_Fields\Field41_combined_final_roughcal.fits
E:\New_Fields\Field169_combined_final_roughcal.fits
E:\New_Fields\Field47_combined_final_roughcal.fits
E:\New_Fields\Field43_combined_final_roughcal.fits
E:\New_Fields\Field39_combined_final_roughcal.fits
E:\New_Fields\Field45_combined_final_roughcal.fits
E:\New_Fields\Field6_combined_final_roughcal.fits
E:\New_Fields\Field49_combined_final_roughcal.fits
E:\New_Fields\Field51_combined_final_roughcal.fits
SCRIPT :
# -*- coding: utf-8 -*-
#!/usr/bin/env python
from astropy.io import fits
import numpy as np
###################################
# Fichier contenant le champ brut #
###################################
with open("E:\New_Fields\liste_essai.txt", "r") as f :
fichier_entier = f.read()
files = fichier_entier.split("\n")
for fichier in files :
with open(fichier, 'r') :
outname = fichier.replace('combined_final_roughcal', 'mask')
# Ouverture du fichier à l'aide d'astropy
field = fits.open(fichier)
print "Ouverture du fichier : " + str(fichier)
print " "
# Lecture des données fits
tbdata = field[1].data
print "Lecture des données du fits"
###############################
# Application du tri sur PROB #
###############################
mask = np.bitwise_and(tbdata['PROB'] < 1.1, tbdata['PROB'] > -0.1)
new_tbdata = tbdata[mask]
print "Création du Masque"
print " "
#################################################
# Détermination des valeurs extremales du champ #
#################################################
# Détermination de RA_max et RA_min
RA_max = np.max(new_tbdata['RA'])
RA_min = np.min(new_tbdata['RA'])
print "RA_max vaut : " + str(RA_max)
print "RA_min vaut : " + str(RA_min)
# Détermination de DEC_max et DEC_min
DEC_max = np.max(new_tbdata['DEC'])
DEC_min = np.min(new_tbdata['DEC'])
print "DEC_max vaut : " + str(DEC_max)
print "DEC_min vaut : " + str(DEC_min)
#########################################
# Calcul de la valeur centrale du champ #
#########################################
# Détermination de RA_moyen et DEC_moyen
RA_central = (RA_max + RA_min)/2.
DEC_central = (DEC_max + DEC_min)/2.
print "RA_central vaut : " + str(RA_central)
print "DEC_central vaut : " + str(DEC_central)
print " "
print " ------------------------------- "
print " "
##############################
# Détermination de X et de Y #
##############################
# Creation du tableau
new_col_data_X = array = (new_tbdata['RA'] - RA_central) * np.cos(DEC_central)
new_col_data_Y = array = new_tbdata['DEC'] - DEC_central
print 'Création du tableau'
# Creation des nouvelles colonnes
col_X = fits.Column(name='X', format='D', array=new_col_data_X)
col_Y = fits.Column(name='Y', format='D', array=new_col_data_Y)
print 'Création des nouvelles colonnes X et Y'
# Creation de la nouvelle table
tbdata_final = fits.BinTableHDU.from_columns(new_tbdata.columns + col_X + col_Y)
# Ecriture du fichier de sortie .fits
tbdata_final.writeto(outname)
print 'Ecriture du nouveau fichier mask : ' + outname
del field, tbdata, mask, new_tbdata, new_col_data_X, new_col_data_Y, col_X, col_Y, tbdata_final
print " "
print " ......................................................................................"
print " "
Thank you ;)