I recently got the challenge to print a big mersenne prime: 2**82589933-1. On my CPU that takes ~40 minutes with apcalc and ~120 minutes with python 2.7. It's a number with 24 million digits and a bit.
Here is my own little C code for the conversion:
// print 2**82589933-1
#include <stdio.h>
#include <math.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
const uint32_t exponent = 82589933;
//const uint32_t exponent = 100;
//outputs 1267650600228229401496703205375
const uint32_t blocks = (exponent + 31) / 32;
const uint32_t digits = (int)(exponent * log(2.0) / log(10.0)) + 10;
uint32_t num[2][blocks];
char out[digits + 1];
// blocks : number of uint32_t in num1 and num2
// num1 : number to convert
// num2 : free space
// out : end of output buffer
void conv(uint32_t blocks, uint32_t *num1, uint32_t *num2, char *out) {
if (blocks == 0) return;
const uint32_t div = 1000000000;
uint64_t t = 0;
for (uint32_t i = 0; i < blocks; ++i) {
t = (t << 32) + num1[i];
num2[i] = t / div;
t = t % div;
}
for (int i = 0; i < 9; ++i) {
*out-- = '0' + (t % 10);
t /= 10;
}
if (num2[0] == 0) {
--blocks;
num2++;
}
conv(blocks, num2, num1, out);
}
int main() {
// prepare number
uint32_t t = exponent % 32;
num[0][0] = (1LLU << t) - 1;
memset(&num[0][1], 0xFF, (blocks - 1) * 4);
// prepare output
memset(out, '0', digits);
out[digits] = 0;
// convert to decimal
conv(blocks, num[0], num[1], &out[digits - 1]);
// output number
char *res = out;
while(*res == '0') ++res;
printf("%s\n", res);
return 0;
}
The conversion is destructive and tail recursive. In each step it divides num1
by 1_000_000_000 and stores the result in num2
. The remainder is added to out
. Then it calls itself with num1
and num2
switched and often shortened by one (blocks
is decremented). out
is filled from back to front. You have to allocate it large enough and then strip leading zeroes.
Python seems to be using a similar mechanism for converting big integers to decimal.
Want to do better?
For large number like in my case each division by 1_000_000_000 takes rather long. At a certain size a divide&conquer algorithm does better. In my case the first division would be by dividing by 10 ^ 16777216 to split the number into divident and remainder. Then convert each part separately. Now each part is still big so split again at 10 ^ 8388608. Recursively keep splitting till the numbers are small enough. Say maybe 1024 digits each. Those convert with the simple algorithm above. The right definition of "small enough" would have to be tested, 1024 is just a guess.
While the long division of two big integer numbers is expensive, much more so than a division by 1_000_000_000, the time spend there is then saved because each separate chunk requires far fewer divisions by 1_000_000_000 to convert to decimal.
And if you have split the problem into separate and independent chunks it's only a tiny step away from spreading the chunks out among multiple cores. That would really speed up the conversion another step. It looks like apcalc uses divide&conquer but not multi-threading.