This provides NSE & standard eval functions:
library(dplyr)
df <- data_frame(a=sample(letters, 4), b=c(1:4), c=c(5:8))
reset_rownames <- function(df, col="rowname") {
stopifnot(is.data.frame(df))
col <- as.character(substitute(col))
reset_rownames_(df, col)
}
reset_rownames_ <- function(df, col="rowname") {
stopifnot(is.data.frame(df))
nm <- data.frame(df)[, col]
df <- df[, !(colnames(df) %in% col)]
rownames(df) <- nm
df
}
m <- "rowname"
head(as.matrix(reset_rownames(add_rownames(mtcars), "rowname")))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
head(as.matrix(reset_rownames_(add_rownames(mtcars), m)))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Perhaps to_rownames()
or set_rownames()
makes more sense. ¯\_(ツ)_/¯
YMMV.