i have the following problem: I would like to extract a 1D profile from a 2D array, which is relatively simple. And it is also easy to do this in an arbitrary direction (see here).
But i would like to give the profile a certain width, so that the values perpendicular to the profile are averaged. I managed to do this, but it is extremely slow. Does anyone have a good solution for that?
Thanks!
import numpy as np
import os
import math
import itertools
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def closest_point(points, coords):
min_distances = []
coords = coords
for point in points:
distances = []
for coord in coords:
distances.append(np.sqrt((point[0]-coord[0])**2 + (point[1]-coord[1])**2))
val, idx = min((val, idx) for (idx, val) in enumerate(distances))
min_distances.append(coords[idx])
return min_distances
def rect_profile(x0, y0, x1, y1, width):
xd=x1-x0
yd=y1-y0
alpha = (np.angle(xd+1j*yd))
y00 = y0 - np.cos(math.pi - alpha)*width
x00 = x0 - np.sin(math.pi - alpha)*width
y01 = y0 + np.cos(math.pi - alpha)*width
x01 = x0 + np.sin(math.pi - alpha)*width
y10 = y1 + np.cos(math.pi - alpha)*width
x10 = x1 + np.sin(math.pi - alpha)*width
y11 = y1 - np.cos(math.pi - alpha)*width
x11 = x1 - np.sin(math.pi - alpha)*width
vertices = ((y00, x00), (y01, x01), (y10, x10), (y11, x11))
poly_points = [x00, x01, x10, x11], [y00, y01, y10, y11]
poly = Polygon(((y00, x00), (y01, x01), (y10, x10), (y11, x11)))
return poly, poly_points
def averaged_profile(image, x0, y0, x1, y1, width):
num = np.sqrt((x1-x0)**2 + (y1-y0)**2)
x, y = np.linspace(x0, x1, num), np.linspace(y0, y1, num)
coords = list(zip(x, y))
# Get all points that are in Rectangle
poly, poly_points = rect_profile(x0, y0, x1, y1, width)
points_in_poly = []
for point in itertools.product(range(image.shape[0]), range(image.shape[1])):
if poly.get_path().contains_point(point, radius=1) == True:
points_in_poly.append((point[1], point[0]))
# Finds closest point on line for each point in poly
neighbour = closest_point(points_in_poly, coords)
# Add all phase values corresponding to closest point on line
data = []
for i in range(len(coords)):
data.append([])
for idx in enumerate(points_in_poly):
index = coords.index(neighbour[idx[0]])
data[index].append(image[idx[1][1], idx[1][0]])
# Average data perpendicular to profile
for i in enumerate(data):
data[i[0]] = np.nanmean(data[i[0]])
# Plot
fig, axes = plt.subplots(figsize=(10, 5), nrows=1, ncols=2)
axes[0].imshow(image)
axes[0].plot([poly_points[0][0], poly_points[0][1]], [poly_points[1][0], poly_points[1][1]], 'yellow')
axes[0].plot([poly_points[0][1], poly_points[0][2]], [poly_points[1][1], poly_points[1][2]], 'yellow')
axes[0].plot([poly_points[0][2], poly_points[0][3]], [poly_points[1][2], poly_points[1][3]], 'yellow')
axes[0].plot([poly_points[0][3], poly_points[0][0]], [poly_points[1][3], poly_points[1][0]], 'yellow')
axes[0].axis('image')
axes[1].plot(data)
return data
from scipy.misc import face
img = face(gray=True)
profile = averaged_profile(img, 10, 10, 500, 500, 10)