The example implementation Wikipedia provides for a spinlock with the x86 XCHG command is:
; Intel syntax
locked: ; The lock variable. 1 = locked, 0 = unlocked.
dd 0
spin_lock:
mov eax, 1 ; Set the EAX register to 1.
xchg eax, [locked] ; Atomically swap the EAX register with
; the lock variable.
; This will always store 1 to the lock, leaving
; the previous value in the EAX register.
test eax, eax ; Test EAX with itself. Among other things, this will
; set the processor's Zero Flag if EAX is 0.
; If EAX is 0, then the lock was unlocked and
; we just locked it.
; Otherwise, EAX is 1 and we didn't acquire the lock.
jnz spin_lock ; Jump back to the MOV instruction if the Zero Flag is
; not set; the lock was previously locked, and so
; we need to spin until it becomes unlocked.
ret ; The lock has been acquired, return to the calling
; function.
spin_unlock:
mov eax, 0 ; Set the EAX register to 0.
xchg eax, [locked] ; Atomically swap the EAX register with
; the lock variable.
ret ; The lock has been released.
from here https://en.wikipedia.org/wiki/Spinlock#Example_implementation
What I don't understand is why the unlock would need to be atomic. What's wrong with
spin_unlock:
mov [locked], 0