To elaborate a bit on @DanGetz's answer, here is some code that uses the strike data as the driver, rather than iterating the entire grid for each strike point. I'm assuming you're centered on Australia's median point, with 0.11 degree grid squares, even though the size of a degree varies by latitude!
Some back-of-the-envelope computation with a quick reference to Wikipedia tells me that your 40km distance is a ±4 grid-square range from north to south, and a ±5 grid-square range from east to west. (It drops to 4 squares in the lower latitudes, but ... meh!)
The tricks here, as mentioned, are to convert from strike position (lat/lon) to grid square in a direct, formulaic manner. Figure out the position of one corner of the grid, subtract that position from the strike, then divide by the size of the grid - 0.11 degrees, truncate, and you have your row/col indexes. Now visit all the surrounding squares until the distance grows too great, which is at most 1 + (2 * 2 * 4 * 5) = 81 squares checking for distance. Increment the squares within range.
The result is that I'm doing at most 81 visits times 1000 strikes (or however many you have) as opposed to visiting 100,000 grid squares times 1000 strikes. This is a significant performance gain.
Note that you don't describe your incoming data format, so I just randomly generated numbers. You'll want to fix that. ;-)
#!python3
"""
Per WikiPedia (https://en.wikipedia.org/wiki/Centre_points_of_Australia)
Median point
============
The median point was calculated as the midpoint between the extremes of
latitude and longitude of the continent.
24 degrees 15 minutes south latitude, 133 degrees 25 minutes east
longitude (24°15′S 133°25′E); position on SG53-01 Henbury 1:250 000
and 5549 James 1:100 000 scale maps.
"""
MEDIAN_LAT = -(24.00 + 15.00/60.00)
MEDIAN_LON = (133 + 25.00/60.00)
"""
From the OP:
The starting grid has the overall shape of a rectangle, made up of
squares with width of 0.11 and length 0.11. The entire rectange is about
50x30. Lastly I have a shapefile which outlines the 'forecast zones' in
Australia, and if any point in the grid is outside this zone then we
omit it. So all the leftover points (insideoceanlist) are the ones in
Australia.
"""
DELTA_LAT = 0.11
DELTA_LON = 0.11
GRID_WIDTH = 50.0 # degrees
GRID_HEIGHT = 30.0 # degrees
GRID_ROWS = int(GRID_HEIGHT / DELTA_LAT) + 1
GRID_COLS = int(GRID_WIDTH / DELTA_LON) + 1
LAT_SIGN = 1.0 if MEDIAN_LAT >= 0 else -1.0
LON_SIGN = 1.0 if MEDIAN_LON >= 0 else -1.0
GRID_LOW_LAT = MEDIAN_LAT - (LAT_SIGN * GRID_HEIGHT / 2.0)
GRID_HIGH_LAT = MEDIAN_LAT + (LAT_SIGN * GRID_HEIGHT / 2.0)
GRID_MIN_LAT = min(GRID_LOW_LAT, GRID_HIGH_LAT)
GRID_MAX_LAT = max(GRID_LOW_LAT, GRID_HIGH_LAT)
GRID_LOW_LON = MEDIAN_LON - (LON_SIGN * GRID_WIDTH / 2.0)
GRID_HIGH_LON = MEDIAN_LON + (LON_SIGN * GRID_WIDTH / 2.0)
GRID_MIN_LON = min(GRID_LOW_LON, GRID_HIGH_LON)
GRID_MAX_LON = max(GRID_LOW_LON, GRID_HIGH_LON)
GRID_PROXIMITY_KM = 40.0
"""https://en.wikipedia.org/wiki/Longitude#Length_of_a_degree_of_longitude"""
_Degree_sizes_km = (
(0, 110.574, 111.320),
(15, 110.649, 107.551),
(30, 110.852, 96.486),
(45, 111.132, 78.847),
(60, 111.412, 55.800),
(75, 111.618, 28.902),
(90, 111.694, 0.000),
)
# For the Australia situation, +/- 15 degrees means that our worst
# case scenario is about 40 degrees south. At that point, a single
# degree of longitude is smallest, with a size about 80 km. That
# in turn means a 40 km distance window will span half a degree or so.
# Since grid squares a 0.11 degree across, we have to check +/- 5
# cols.
GRID_SEARCH_COLS = 5
# Latitude degrees are nice and constant-like at about 110km. That means
# a .11 degree grid square is 12km or so, making our search range +/- 4
# rows.
GRID_SEARCH_ROWS = 4
def make_grid(rows, cols):
return [[0 for col in range(cols)] for row in range(rows)]
Grid = make_grid(GRID_ROWS, GRID_COLS)
def _col_to_lon(col):
return GRID_LOW_LON + (LON_SIGN * DELTA_LON * col)
Col_to_lon = [_col_to_lon(c) for c in range(GRID_COLS)]
def _row_to_lat(row):
return GRID_LOW_LAT + (LAT_SIGN * DELTA_LAT * row)
Row_to_lat = [_row_to_lat(r) for r in range(GRID_ROWS)]
def pos_to_grid(pos):
lat, lon = pos
if lat < GRID_MIN_LAT or lat >= GRID_MAX_LAT:
print("Lat limits:", GRID_MIN_LAT, GRID_MAX_LAT)
print("Position {} is outside grid.".format(pos))
return None
if lon < GRID_MIN_LON or lon >= GRID_MAX_LON:
print("Lon limits:", GRID_MIN_LON, GRID_MAX_LON)
print("Position {} is outside grid.".format(pos))
return None
row = int((lat - GRID_LOW_LAT) / DELTA_LAT)
col = int((lon - GRID_LOW_LON) / DELTA_LON)
return (row, col)
def visit_nearby_grid_points(pos, dist_km):
row, col = pos_to_grid(pos)
# +0, +0 is not symmetric - don't increment twice
Grid[row][col] += 1
for dr in range(1, GRID_SEARCH_ROWS):
for dc in range(1, GRID_SEARCH_COLS):
misses = 0
gridpos = Row_to_lat[row+dr], Col_to_lon[col+dc]
if great_circle(pos, gridpos).meters <= dist_km:
Grid[row+dr][col+dc] += 1
else:
misses += 1
gridpos = Row_to_lat[row+dr], Col_to_lon[col-dc]
if great_circle(pos, gridpos).meters <= dist_km:
Grid[row+dr][col-dc] += 1
else:
misses += 1
gridpos = Row_to_lat[row-dr], Col_to_lon[col+dc]
if great_circle(pos, gridpos).meters <= dist_km:
Grid[row-dr][col+dc] += 1
else:
misses += 1
gridpos = Row_to_lat[row-dr], Col_to_lon[col-dc]
if great_circle(pos, gridpos).meters <= dist_km:
Grid[row-dr][col-dc] += 1
else:
misses += 1
if misses == 4:
break
def get_pos_from_line(line):
"""
FIXME: Don't know the format of your data, just random numbers
"""
import random
return (random.uniform(GRID_LOW_LAT, GRID_HIGH_LAT),
random.uniform(GRID_LOW_LON, GRID_HIGH_LON))
with open("strikes.data", "r") as strikes:
for line in strikes:
pos = get_pos_from_line(line)
visit_nearby_grid_points(pos, GRID_PROXIMITY_KM)