Packages like RMySQL
and sqldf
allow one to interface with local or remote database servers. I'm creating a portable project which involves importing sql data in cases (or on devices) which do not always have access to a running server, but which do always have access to the latest .sql dump of the database.
The goal seems simple enough: import an .sql dump into R without the involvement of a MySQL server. More specifically, I'd like to create a list of lists in which the elements correspond to any databases defined in the .sql dump (there may be multiple), and those elements in turn consist of the tables in those databases.
To make this reproducible, let's take the sample sportsdb SQL file here — if you unzip it it's called sportsdb_sample_mysql_20080303.sql.
One would think sqldf might be able to do it:
read.csv.sql('sportsdb_sample_mysql_20080303.sql', sql="SELECT * FROM addresses")
Error in sqliteSendQuery(con, statement, bind.data) :
error in statement: no such table: addresses
This even though there certainly is a table addresses in the dump. This post on the sqldf list mentions the same error, but no solution.
Then there is an sql.reader
function in the package ProjectTemplate
, which looks promising. Poking around, the source for the function can be found here, and it assumes a running database server and relies on RMySQL
— not what I need.
So... we seem to be running out of options. Any help from the hivemind appreciated!
(To reiterate, I am not looking for a solution that relies on access to an SQL server; that's easy with dbReadTable
from the RMySQL
package. I would very much like to bypass the server and get the data straight from the .sql dump file.)