EDIT: After trying several things, I have added the following to my code:
with tf.Session(graph=self.graph) as session:
session.run(tf.initialize_all_variables())
try:
session.run(tf.assert_variables_initialized())
except tf.errors.FailedPreconditionError:
raise RuntimeError("Not all variables initialized!")
Now, occasionally this fails, i.e. tf.assert_variables_initialized()
will raise FailedPreconditionError, even though immediately before it, tf.initialize_all_variables()
was executed. Does anyone have any idea how this can happen?
Original question:
Background
I'm running cross-validated (CV) hyperparameter search on a basic neural net created through Tensorflow, with GradientDescentOptimizer. At seemingly random moments I'm getting a FailedPreconditionError, for different Variables. For example (full stack trace at end of post):
FailedPreconditionError: Attempting to use uninitialized value Variable_5
[[Node: Variable_5/read = Identity[T=DT_FLOAT, _class=["loc:@Variable_5"], _device="/job:localhost/replica:0/task:0/gpu:0"](Variable_5)]]
Some runs fail fairly fast, others not -- one has been running for 15 hours now without problems. I'm running this in parallel on multiple GPUs - not the optimization itself, but each CV fold.
What I've checked
From this and this post I understand that this error occurs when attempting to use Variables that haven't been initialized using tf.initialize_all_variables()
. However, I am 99% certain that I'm doing this (and if not, I'd expect it to always fail) - I'll post code below.
The API doc says that
This exception is most commonly raised when running an operation that reads a tf.Variable before it has been initialized.
"Most commonly" suggests that it can also be raised in different scenarios. So, for now the main question:
Question: are there other scenarios under which this exception may be raised, and what are they?
Code
MLP class:
class MLP(object):
def __init__(self, n_in, hidden_config, n_out, optimizer, f_transfer=tf.nn.tanh, f_loss=mean_squared_error,
f_out=tf.identity, seed=None, global_step=None, graph=None, dropout_keep_ratio=1):
self.graph = tf.Graph() if graph is None else graph
# all variables defined below
with self.graph.as_default():
self.X = tf.placeholder(tf.float32, shape=(None, n_in))
self.y = tf.placeholder(tf.float32, shape=(None, n_out))
self._init_weights(n_in, hidden_config, n_out, seed)
self._init_computations(f_transfer, f_loss, f_out)
self._init_optimizer(optimizer, global_step)
def fit_validate(self, X, y, val_X, val_y, val_f, iters=100, val_step=1):
[snip]
with tf.Session(graph=self.graph) as session:
VAR INIT HERE-->tf.initialize_all_variables().run() #<-- VAR INIT HERE
for i in xrange(iters):
[snip: get minibatch here]
_, l = session.run([self.optimizer, self.loss], feed_dict={self.X:X_batch, self.y:y_batch})
# validate
if i % val_step == 0:
val_yhat = self.validation_yhat.eval(feed_dict=val_feed_dict, session=session)
As you can see, tf.init_all_variables().run()
is always called before anything else is done. The net is initialized as:
def estimator_getter(params):
[snip]
graph = tf.Graph()
with graph.as_default():
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(params.get('learning_rate',0.1), global_step, decay_steps, decay_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
net = MLP(config_num_inputs[config_id], hidden, 1, optimizer, seed=params.get('seed',100), global_step=global_step, graph=graph, dropout_keep_ratio=dropout)
Full example stack trace:
FailedPreconditionError: Attempting to use uninitialized value Variable_5
[[Node: Variable_5/read = Identity[T=DT_FLOAT, _class=["loc:@Variable_5"], _device="/job:localhost/replica:0/task:0/gpu:0"](Variable_5)]]
Caused by op u'Variable_5/read', defined at:
File "tf_paramsearch.py", line 373, in <module>
randomized_search_params(int(sys.argv[1]))
File "tf_paramsearch.py", line 356, in randomized_search_params
hypersearch.fit()
File "/home/centos/ODQ/main/python/odq/cv.py", line 430, in fit
return self._fit(sampled_params)
File "/home/centos/ODQ/main/python/odq/cv.py", line 190, in _fit
for train_key, test_key in self.cv)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 766, in __call__
n_jobs = self._initialize_pool()
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 537, in _initialize_pool
self._pool = MemmapingPool(n_jobs, **poolargs)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/sklearn/externals/joblib/pool.py", line 580, in __init__
super(MemmapingPool, self).__init__(**poolargs)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/sklearn/externals/joblib/pool.py", line 418, in __init__
super(PicklingPool, self).__init__(**poolargs)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/multiprocessing/pool.py", line 159, in __init__
self._repopulate_pool()
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/multiprocessing/pool.py", line 223, in _repopulate_pool
w.start()
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/multiprocessing/process.py", line 130, in start
self._popen = Popen(self)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/multiprocessing/forking.py", line 126, in __init__
code = process_obj._bootstrap()
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/multiprocessing/process.py", line 114, in run
self._target(*self._args, **self._kwargs)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/multiprocessing/pool.py", line 113, in worker
result = (True, func(*args, **kwds))
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 130, in __call__
return self.func(*args, **kwargs)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 72, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/home/centos/ODQ/main/python/odq/cv.py", line 131, in _fold_runner
estimator = estimator_getter(parameters)
File "tf_paramsearch.py", line 264, in estimator_getter
net = MLP(config_num_inputs[config_id], hidden, 1, optimizer, seed=params.get('seed',100), global_step=global_step, graph=graph, dropout_keep_ratio=dropout)
File "tf_paramsearch.py", line 86, in __init__
self._init_weights(n_in, hidden_config, n_out, seed)
File "tf_paramsearch.py", line 105, in _init_weights
self.out_weights = tf.Variable(tf.truncated_normal([hidden_config[-1], n_out], stddev=stdev))
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/variables.py", line 206, in __init__
dtype=dtype)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/variables.py", line 275, in _init_from_args
self._snapshot = array_ops.identity(self._variable, name="read")
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 523, in identity
return _op_def_lib.apply_op("Identity", input=input, name=name)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/op_def_library.py", line 655, in apply_op
op_def=op_def)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2117, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/centos/miniconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1128, in __init__
self._traceback = _extract_stack()