I am a beginner in TensorFlow, currently training a CNN.
I am using Saver in order to save the parameters used by the model, but I am having concerns whether this would itself store all the Variables used by the model, and is sufficient to restore the values to re-run the program for performing classification/testing on the trained network.
Let us look at the famous example MNIST given by TensorFlow.
In the example, we have bunch of Convolutional blocks, all of which have weight, and bias variables that gets initialised when the program is run.
W_conv1 = init_weight([5,5,1,32])
b_conv1 = init_bias([32])
After having processed several layers, we create a session, and initialise all the variables added to the graph.
sess = tf.Session()
sess.run(tf.initialize_all_variables())
saver = tf.train.Saver()
Here, is it possible to comment the saver.save code, and replace it by saver.restore(sess,file_path) after the training, in order to restore the weight, bias, etc., parameters back to the graph? Is this how it should be ?
for i in range(1000):
...
if i%500 == 0:
saver.save(sess,"model%d.cpkt"%(i))
I am currently training on large dataset, so terminating, and restarting the training is a waste of time, and resources so I request someone to please clarify before the I start the training.