I have a large database (~100Gb) from which I need to pull every entry, perform some comparisons on it, and then store the results of those comparisons. I have attempted to run parallel queries within a single R sessions without any success. I can just run multiple R sessions all at once but I am looking for a better approach. Here is what I attempted:
library(RSQLite)
library(data.table)
library(foreach)
library(doMC)
#---------
# SETUP
#---------
#connect to db
db <- dbConnect(SQLite(), dbname="genes_drug_combos.sqlite")
#---------
# QUERY
#---------
# 856086 combos = 1309 * 109 * 6
registerDoMC(8)
#I would run 6 seperate R sessions (one for each i)
res_list <- foreach(i=1:6) %dopar% {
a <- i*109-108
b <- i*109
pb <- txtProgressBar(min=a, max=b, style=3)
res <- list()
for (j in a:b) {
#get preds for drug combos
statement <- paste("SELECT * from combo_tstats WHERE rowid BETWEEN", (j*1309)-1308, "AND", j*1309)
combo_preds <- dbGetQuery(db, statement)
#here I do some stuff to the result returned from the query
combo_names <- combo_preds$drug_combo
combo_preds <- as.data.frame(t(combo_preds[,-1]))
colnames(combo_preds) <- combo_names
#get top drug combos
top_combos <- get_top_drugs(query_genes, drug_info=combo_preds, es=T)
#update progress and store result
setTxtProgressBar(pb, j)
res[[ length(res)+1 ]] <- top_combos
}
#bind results together
res <- rbindlist(res)
}
I dont get any errors but only one core spins up. In contrast, if I run multiple R sessions, all my cores go at it. What am I doing wrong?