I've tried to use a Random Forest model in order to predict a stream of examples, but it appears that I cannot use that model to classify the examples. Here is the code used in pyspark:
sc = SparkContext(appName="App")
model = RandomForest.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={}, impurity='gini', numTrees=150)
ssc = StreamingContext(sc, 1)
lines = ssc.socketTextStream(hostname, int(port))
parsedLines = lines.map(parse)
parsedLines.pprint()
predictions = parsedLines.map(lambda event: model.predict(event.features))
and the error returned while compiling it in the cluster:
Error : "It appears that you are attempting to reference SparkContext from a broadcast "
Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
is there a way to use a modèle generated from a static data to predict a streaming examples ?
Thanks guys i really appreciate it !!!!